Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để pt được xác định thì :
\(x-2\ne0;x^2-1\ne0\)
=>\(\left\{{}\begin{matrix}x\ne2\\x\ne-1\\x\ne1\end{matrix}\right.\)
Vậy chọn B
a.\(x^3-x=0 \)
\(x(x^2-1)=0\)
x=0 hay x2-1=0
x=0 hay x2=1
x=0 hay x=1
Vậy x=0 hay x=1
b.\(x^3+1=0\)
\(x(x^2+1)=0\)
\(x=0 hay x^2+1=0\)
\(x=0 hay x^2=-1\)(vô lí vì x2≥0)
Vậy x=0
c.\(x^2-4x=0\)
\(x(x-4)=0\)
x=0 hay x-4=0
x=0 hay x=4
Vậy x=0 hay x=4
d.\(x(x-1)-2(1-x)=0\)
\(x(x-1)+2(x-1)=0 \)
\((x-1)(x+2)=0\)
x-1=0 hay x+2=0
x=1 hay x=-2
Vậy x=1 hay x=-2
e.\(2x(x-2)-(2-x)^2=0\)
\(2x(x-2)+(x-2)^2=0\)
\((x-2)(2x+x-2)=0\)
\((x-2)(3x-2)=0\)
x-2=0 hay 3x-2=0
x=2 hay 3x=2
x=2 hay x=2/3
Vậy x=2 hay x=2/3
f.\(4x(x+1)=8(x+1)\)
\(4x(x+1)-8(x+1)=0\)
\(4(x+1)(x-2)=0\)
4(x+1)=0 hay x-2=0
x+1=0 hay x=2
x=-1 hay x=2
Vậy x=-1 hay x=2
g.\(5x(x-2)-x+2=0\)
\(5x(x-2)-(x-2)=0\)
\((x-2)(5x-1)=0\)
x-2=0 hay 5x-1=0
x=2 hay 5x=1
x=2 hay x=1/5
Vậy x=2 hay x=1/5
h.\((x+1)=(x+1)^2\)
\((x+1)-(x+1)^2=0\)
\((x+1)(1-x-1)=0\)
\((x+1)(-x)=0\)
x+1= 0 hay -x=0
x=-1 hay x=0
Vậy x=-1 hay x=0
Câu 1: a
Câu 2: (đề có sai không vậy bạn ?)
Câu 3: b
Câu 4: a
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
Chọn D