K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

Ta có bảng sau:

Vị trí tương đối của hai đường tròn Số điểm chung Hệ thức giữa d, R, r
(O; R) đựng (O'; r) 0 d < R - r
Ở ngoài nhau 0 d > R + r
Tiếp xúc ngoài 1 d = R + r
Tiếp xúc trong 1 d = R – r
Cắt nhau 2 R – r < d < R + r
5 tháng 3 2019

Ta có bảng sau:

Vị trí tương đối của hai đường tròn Số điểm chung Hệ thức giữa d, R, r
(O; R) đựng (O'; r) 0 d < R - r
Ở ngoài nhau 0 d > R + r
Tiếp xúc ngoài 1 d = R + r
Tiếp xúc trong 1 d = R – r
Cắt nhau 2 R – r < d < R + r
15 tháng 11 2021

 đựng (O';r)giữa d,R,r

 và (O';r)giữa d,R,r

 và (O';r)Tiếp xúc ngoài có 1 điểm chung, giữa d,R,r

 và (O';r)Tiếp xúc trong có 1 điểm chung, giữa d,R,r

 và (O';r)cắt nhau có 2 điểm chung, giữa d,R,r

 

 

28 tháng 11 2021

 

0; d<R-r

Ở ngoài nhau;0

1;d=R+r

Tiếp xúc trong;1

Cắt nhau;R-r<d<R+r

25 tháng 4 2017
Vị trí tương đối của hai đường tròn Số điểm chung Hệ thức giữa d,R,r
(O,R) dựng (O’,r’) 0 D<R-r
(O;R) ở ngoài nhau (O’;r) 0 D>R+r
Tiếp xúc ngoài 1 D=R+r
Tiếp xúc trong 1 D=R-r
Hai đường tròn cắt nhau 2 R-r<d<R+r
20 tháng 10 2019

Vị trí tương đối của hai đường tròn

(O ; R) và (O’ ; r) (R ≥ r)

Hệ thức giữa OO’ với

R và r

Số điểm chung

Hai đường tròn cắt nhau

R – r < OO’ < R + r

2

Hai đường tròn tiếp xúc nhau

- Tiếp xúc ngoài

OO’ = R + r

1

- Tiếp xúc trong

OO’ = R – r > 0

Hai đường tròn không giao nhau

- (O) và (O’) ở ngoài nhau

OO’ > R + r

0

- (O) đựng (O’)

OO’ < R - r

Còn lại phần cuối 0 bên phải nhá Ly yêu?

18 tháng 5 2017

a, Chứng minh được tương tự câu 1a,

=>  O ' M O ^ = 90 0  

Áp dụng hệ thức lượng trong tam giác vuông tính được MA =  R r

b, Chứng minh  S B C O O ' = R + r R r

c, Chứng minh được: ∆BAC:∆OMO’ =>  S B A C S O M O ' = B C O O ' 2

=>  S B A C = S O M O ' . B C 2 O O ' 2 = 4 R r R r R + r

d, Tứ giác OBCO’ là hình thang vuông tại B và C có IM là đường trung bình => IM ⊥ BC = {M}

Câu 1: Cho 2 đường tròn (O;R) và (O’;r), R > r    Trong các phát biểu sau phát biểu nào là phát biểu saiA. Hai đường tròn (O) và (O’) cắt nhau khi và chỉ khi R - r < OO' < R + rB. Hai đường tròn (O) và (O’) tiếp xúc ngoài khi và chỉ khi OO’ = R - rC. Hai đường tròn (O) và (O’) tiếp xúc trong khi và chỉ khi OO’ = R - rD. Hai đường tròn (O) và (O’) gọi là ngoài nhau khi và chỉ khi OO’ > R + rCâu 2: Gọi d là khoảng cách 2 tâm của (O, R) và (O', r)...
Đọc tiếp

Câu 1: Cho 2 đường tròn (O;R) và (O’;r), R > r

    Trong các phát biểu sau phát biểu nào là phát biểu sai

A. Hai đường tròn (O) và (O’) cắt nhau khi và chỉ khi R - r < OO' < R + r

B. Hai đường tròn (O) và (O’) tiếp xúc ngoài khi và chỉ khi OO’ = R - r

C. Hai đường tròn (O) và (O’) tiếp xúc trong khi và chỉ khi OO’ = R - r

D. Hai đường tròn (O) và (O’) gọi là ngoài nhau khi và chỉ khi OO’ > R + r

Câu 2: Gọi d là khoảng cách 2 tâm của (O, R) và (O', r) với 0 < r < R. Để (O) và (O') tiếp xúc trong thì:

A. R - r < d < R + r        

B. d = R - r

C. d > R + r        

D. d = R + r

Câu 3: Cho hai đường tròn tâm O và O' có d=OO' và bán kính lần lượt R và R'.Trong các câu sau,câu nào sai?

A.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là: R-R'<d<R+R'

B.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là: |R-R'|<d<R+R'

C.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là R,R' và d là độ dài ba cạnh của một tam giác

D.Trong ba câu trên,chỉ có câu a là câu sai

Câu 4: Cho hai đường tròn đồng tâm O,bán kính R và 2R.Gọi P là một điểm nằm ngoài đường tròn (O,2R).Vé đường tròn tâm P bán kính PO,cắt đường tròn (O,2R) tại 2 điểm C,D.OC cắt đường tròn (O;R) tại E.OD cắt đường tròn (O;R) tại F.Khi đó: 

(1) EO=EC=R và OF=FD=R 

(2) PE là đường cao của tam giác POC

(3) PF là đường cao của tam giác POD

Trong các câu trên: 

A.Chỉ có câu (1) đúng 

B.Chỉ có câu (2) đúng

C.Chỉ có câu (3) đúng 

D.Cả ba câu đều đúng 

E.Tất cả ba câu đều sai

Câu 5: Cho đường tròn (O). A, B, C là 3 điểm thuộc đường tròn sao cho tam giác ABC cân tại A. Phát biểu nào sau đây đúng

    Tiếp tuyến của đường tròn tại A là

A. Đi qua A và vuông góc AB

B. Đi qua A và song song BC

C. Đi qua A và song song AC

D. Đi qua A và vuông góc BC

0