Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng công thức S=abc/4R với abc là độ dài 3 cạnh của tam giác
cách chứng minh để sau nhé, hiện giờ mình lag quá không chứng minh được
Ta có 3x-4y+12=0 \(\Leftrightarrow\)y=\(\frac{3}{4}\)x+3
Đường thẳng y=\(\frac{3}{4}\)x+3 cắt trục Oy tại điểm có tung độ là 3 B(0;3),
cắt trục Ox tại điểm có hoành độ là -4 A(-4;0)
Ta có AOB là tam giác vuông tại O
OA=|-4|=4; OB=|3|=3
AB=5 (theo định lý Pitago)
Tâm đường tròn ngoại tiếp tam giác AOB vuông tại O là trung điểm của BC
Bán kính của đường tròn bàng một nửa cạnh huyền=\(\frac{1}{2}\).5=2.5
h = 3 R =3\(\sqrt{3}\) ( vì đường cao đồng thời là trung tuyens)
mà h =\(\frac{a\sqrt{3}}{2}\)
=> a =\(\frac{6R}{\sqrt{3}}=6\)
=> S =ah/2 =.6.3.\(\sqrt{3}\)/2 = 9 \(\sqrt{3}\)
NA/BA = NC/BC
Vì Tam giác ABC vuông tại A, biết AB=3cm,BC=5cm => AC= 4(cm)
=> NC-NA=4 (cm)
=> NC/BC = NA/BA = ( NC-NA)/(BC-AB) = 2
=> NA= BA*2 =6 (cm)
bằng 9 đó bạn 100% luôn
biết là bằng 9 rồi nhưng mà (Nhập kết quả dưới dạng số thập phân gọn nhất)
tính sao?????