Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC ( 2n + 3 ; 3n + 5 )
=> 2n + 3 ⋮ d => 3.( 2n + 3 ) ⋮ d => 6n + 9 ⋮ d
=> 3n + 5 ⋮ d => 2.( 3n + 5 ) ⋮ d => 6n + 10 ⋮ d
=> [ ( 6n + 10 ) - ( 6n + 9 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 2n + 3 ; 3n + 5 ) = 1 nên \(\frac{2n+3}{3n+5}\) là p/s tối giản
Gọi d là ƯC 9 2n + 3 ; 3n + 5 )
=> 2n + 3 chia hết cho d => 3 ( 2n + 3 ) chia hết cho d => 6n + 9 chia hết cho d
=> 3n + 5 chia hết cho d => 2 ( 3n + 5 ) chia hết cho d => 6n + 10 chia hết cho d
=> [ ( 6n + 10 ) - ( 6n + 9 ) ] chia hết cho d
=> 1 chia hết cho d = > d = 1
Vậy ,..........................
Gọi ước chung của 4n+1 và 6n+1 là số tự nhiên x.Ta có :
4n+1 và 6n+1 thuộc B(x) => 6(4n+1); 4(6n+1) hay 24n+6;24n+4 thuộc B(x)
=> (24n+6) - (24n+4) = 2 thuộc B(x) => x = 1;2 mà 4n;6n chẵn nên 4n+1;6n+1 lẻ (không thuộc B(2) )
=> x khác 2 và bằng 1 => 4n+1;6n+1 là 2 số nguyên tố cùng nhau
=> 4n+1 / 6n+1 là phân số tối giản (n thuộc N)
Gọi \(d\inƯC\left(3n-5;3-2n\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n-5⋮d\\3-2n⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n-10⋮d\\6n-9⋮d\end{matrix}\right.\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d\inƯ\left(-1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯC\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(3n-5;3-2n\right)=1\)
hay \(\dfrac{3n-5}{3-2n}\) là phân số tối giản(đpcm)
để p/số trên tối giản thì ƯCLN là 1,gọi số đó là d
n+1:d,2n+2:d
2n+3-2n-2:d
1:d
d=1
vậy p/số đó luôn tối giản
gọi ƯC(n+1;2n+3)=d
ta có n+1 chia hết cho d nên 2(n+1) chia hết cho d nên 2n+2 cũng chia hết cho d , mặt khác 2n+3 chia hết cho d
nên 2n+3-(2n+2) chia hết cho d nên 1 chia hết cho d vậy ƯC của n+1 và 2n+3 là 1 hoặc -1
do đó mọi fân số dạng n+1/2n+3 đều là phân số tối giản
Gọi d là ƯCLN của n + 1 và 2n + 3
Khi đó : n + 1 chia hết cho d , 2n + 3 chia hết cho d
<=> 2(n + 1) chia hết cho d , 2n + 3 chia hết cho d
<=> 2n + 2 chia hết cho d , 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 1 chia hết cho d
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản
a,Gọi d là ƯCLN của n+1 và 2n+3(d thuộc Z/ d khác 0)
=> n+1 chia hết cho d; 2n+ 3 chia hết cho d
=>(n+1)-(2n+3) chia hết cho d
=>1chia hết cho d=> d thuộc Ư của 1
=.> \(\frac{n+1}{2n+3}\)là ps tối giản
b, Gọi d là ƯCLN (2n+3;4n+8)(d thuộc Z/ d khác 0)
=>2n+3 chia hết cho d;4n+8 chia hết cho d
=>(2n+3)-(4n+8) chia hết cho d
=>(2n+3)-(2n+4) chia hết cho d
=>-1 chia hết cho d
=>\(\frac{2n+3}{4n+8}\)là ps tối giản
\(A=\frac{3n+2}{6n+3}\) là phân số tối giản <=>3n+2 và 6n+3 là 2 số ntố cùng nhau
Gọi (3n+2;6n+3)=d
=>3n+2 chia hết cho d <=>2(3n+2)chia hết cho d
<=>6n+4 chia hết cho d
mà 6n+3 cũng chia hết cho d nên
(6n+3)(6n+4) chia hết cho d
mà đây là 2 số liên tiếp
=>d=1
=>A là ps tối giản
nhớ tick mình nha ,cảm ơn
thôi còn thắc mắc gì nữa ko được ns như thế với bn mik nghe chưa.
Bài 2:
a: Gọi d=UCLN(30n+1;15n+1)
\(\Leftrightarrow30n+2-30n-1⋮d\)
=>d=1
=>Phân số tối giản
b: Gọi d=UCLN(2n+3;n+1)
\(\Leftrightarrow2n+3-2n-2⋮d\)
=>d=1
=>Phân số tối giản
c: Gọi \(d=ƯCLN\left(2n+3;3n+5\right)\)
\(\Leftrightarrow6n+9-6n-10⋮d\)
=>d=1
=>ƯCLN(2n+3;3n+5)=1
=>Phân số tối giản