Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Tự phân tích vế trái và điền vào vế phải
Bài 2 :
a) \(3x^3-6x^2+3x\)
\(=3x\left(x^2-2x+1\right)\)
\(=3x\left(x-1\right)^2\)
b) \(2xy+z+2x+yz\)
\(=\left(2xy+2x\right)+\left(z+yz\right)\)
\(=2x\left(y+1\right)+z\left(y+1\right)\)
\(=\left(y+1\right)\left(2x+z\right)\)
c) \(x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
d) \(3x^2-4x-7\)
\(=3x^2+3x-7x-7\)
\(=3x\left(x+1\right)-7\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-7\right)\)
a) (3x+y)(9x2-3xy+y2) = 27x3+y3
b)(2x-5)(4x2+10x+25) = 8x3-125
a)(3x+y)(9x2 -3xy+y2 )=27x3 +y3 |
b)(2x-5)(4x2 +10x+52 )=8x3 -125 |
nho | k |
minh | nhe |
a) (3x +y)( 9x2 - 3xy + y2)
b) (2x - 5)( 4x2 + 10x + 25)
(đề bài này hay đó)
a) Ta có: 27\(x^3\)+ y\(^3\) = (3x)\(^3\) + y\(^3\)= (3x + y)[(3x)\(^2\) – 3x . y + y\(^2\)] = (3x + y)(9x\(^2\) – 3xy + y\(^2\))
Nên: (3x + y) (9x\(^2\) – 3xy + y\(^2\)) = 27x\(^3\) + y\(^3\)
b) Ta có: 8x\(^3\) – 125 = (2x)\(^3\) – 53= (2x – 5)[(2x)\(^2\) + 2x . 5 + 5\(^2\)]
= (2x – 5)(4x\(^2\) + 10x + 25)
Nên:(2x – 5)(4x\(^2\) + 10x + 25)= 8x\(^3\) – 125
Trả lời:
a) Ta có:
27x3 + y3 = (3x)3 + y3= (3x + y)[(3x)2 – 3x . y + y2] = (3x + y)(9x2 – 3xy + y2)
Nên: (3x + y) (9x2 – 3xy + y2 ) = 27x3 + y3
b) Ta có:8x3 - 125 = (2x)3 - 53= (2x - 5)[(2x)2 + 2x . 5 + 52]
= (2x - 5)(4x2 + 10x + 25)
Nên: (2x - 5)(4x2+ 10x +25 ) = 8x3 - 125
Ta có
( 27 x 3 + 27 x 2 + 9 x + 1 ) : ( 3 x + 1 ) 2 = ( 3 x + 1 ) 3 : ( 3 x + 1 ) 2 = 3 x + 1
Đáp án cần chọn là: B
\(\left(2x-y\right)^3=\left(2x\right)^3-3\left(2x\right)^2y+3\cdot2x\cdot y^2-y^3\\ =8x^3-12x^2y+6xy^2-y^3\)
Chọn \(12x^2y\)