K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

Chọn đáp án B

10 tháng 12 2016

Gọi cạnh tam giác ABC là x

theo công thức tính diện tích S = p.r với p là nửa chu vi, r là bán kính đường tròn nội tiếp. 
Ta có \(\frac{x^2\sqrt{3}}{4}=\frac{3x}{2}.1\Rightarrow x=2\sqrt{3}\) (cm)

Suy ra bán kính đường tròn ngoại tiếp : \(R=\frac{AB.BC.AC}{4.S_{ABC}}\frac{x^3}{\frac{4.x^2\sqrt{3}}{4}}=\frac{x}{\sqrt{3}}=2\) (cm)

31 tháng 3 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

20 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.

Ta có: BC = 2R

Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F

Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.

Suy ra: AD = AE = EO = OD = r

Theo tính chất hai tiếp tuyến cắt nhau ta có:

AD = AE

BD = BF

CE = CF

Ta có: 2R + 2r = BF + FC + AD + AE

= (BD + AD) + (AE + CE)

= AB + AC

Vậy AB = AC = 2(R + r)