Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\left|3x-5\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow x=-2004\)( do \(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\))
Bài 2:
a) \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{1}{4}+\dfrac{3}{4}=1\)
b) \(=-\left(\dfrac{1}{99.100}+\dfrac{1}{98.99}+\dfrac{1}{97.98}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)\)
\(=-\left(\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{98}-\dfrac{1}{99}+...+1-\dfrac{1}{2}\right)\)
\(=-\left(1-\dfrac{1}{100}\right)=-\dfrac{99}{100}\)
Bài 1:
a) \(\left|3x-5\right|=4\) (1)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=9\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
b) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\) \(\left(do\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)
\(\Leftrightarrow x=-1\)
c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Leftrightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)
\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2004=0\) \(\left(do\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\right)\)
\(\Leftrightarrow x=-2004\)
a) \(x-\dfrac{2}{3}=\dfrac{3}{8}\Rightarrow x=\dfrac{3}{8}+\dfrac{2}{3}=\dfrac{25}{24}\)
b) \(x-\dfrac{3}{4}=\dfrac{13}{10}:\dfrac{26}{5}\Rightarrow x-\dfrac{3}{4}=\dfrac{1}{4}\Rightarrow x=\dfrac{1}{4}+\dfrac{3}{4}=1\)
c) \(\dfrac{3}{2}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\Rightarrow x+\dfrac{1}{2}=\dfrac{3}{2}-\dfrac{4}{5}=\dfrac{7}{10}\)
\(\Rightarrow x=\dfrac{7}{10}-\dfrac{1}{2}=\dfrac{1}{5}\)
d) \(\left|x-2\right|-1=0\Rightarrow\left|x-2\right|=1\)
\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
a: Ta có: \(x-\dfrac{2}{3}=\dfrac{3}{8}\)
\(\Leftrightarrow x=\dfrac{3}{8}+\dfrac{2}{3}=\dfrac{9}{24}+\dfrac{16}{24}=\dfrac{25}{24}\)
b: Ta có: \(x-\dfrac{3}{4}=\dfrac{13}{10}:\dfrac{26}{5}\)
\(\Leftrightarrow x-\dfrac{3}{4}=\dfrac{13}{10}\cdot\dfrac{5}{26}=\dfrac{1}{4}\)
hay x=1
\(\dfrac{x+4}{8}+\dfrac{x+3}{9}=\dfrac{x+2}{10}+\dfrac{x+1}{11}\)
\(\Leftrightarrow\left(\dfrac{x+4}{8}+1\right)+\left(\dfrac{x+3}{9}+1\right)=\left(\dfrac{x+2}{10}+1\right)+\left(\dfrac{x+1}{11}+1\right)\)
\(\Leftrightarrow\dfrac{x+12}{8}+\dfrac{x+12}{9}-\dfrac{x+12}{10}-\dfrac{x+12}{11}=0\)
\(\Leftrightarrow\left(x+12\right)\left(\dfrac{1}{8}+\dfrac{1}{9}-\dfrac{1}{10}-\dfrac{1}{11}\right)=0\)
\(\Leftrightarrow x=-12\)( do \(\dfrac{1}{8}+\dfrac{1}{9}-\dfrac{1}{10}-\dfrac{1}{11}\ne0\))
\(\dfrac{x+4}{8}+\dfrac{x+3}{9}=\dfrac{x+2}{10}+\dfrac{x+1}{11}\)
\(\dfrac{x+4}{8}+1+\dfrac{x+3}{9}+1=\dfrac{x+2}{10}+1+\dfrac{x+1}{11}+1\)
\(\dfrac{x+12}{8}+\dfrac{x+12}{9}=\dfrac{x+12}{10}+\dfrac{x+12}{11}\)
\(\dfrac{x+12}{8}+\dfrac{x+12}{9}-\dfrac{x+12}{10}-\dfrac{x+12}{11}=0\)
\(\Rightarrow\left(x+12\right).\left(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\right)=0\)
Vì \(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\ne0\) nên \(x+12=0\)
\(\Rightarrow x=-12\)