K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2021

Tập xác định hs là:[\(2\);\(+\infty\)) /{4}

12 tháng 8 2021

có thể trình bày rõ ra hơn được không ạ?

 

NV
23 tháng 10 2021

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)  \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)

b. \(D=R\)

c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)

d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)

28 tháng 1 2023

f. 

\(x+1>0\) và \(7-2x>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x< \dfrac{7}{2}\end{matrix}\right.\)

\(\Rightarrow\) TXĐ: \(D=(-1;\dfrac{7}{2})\)

g.

\(x+1>0\) và \(x^2-4\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x\ne2\\x\ne-2\end{matrix}\right.\)

\(\Rightarrow\) TXĐ: \(D=\left(-1;+\infty\right)\backslash2\)

 

h: ĐKXĐ: |x+1|-|x-2|<>0

=>|x+1|<>|x-2|

=>x-2<>x+1 và x+1<>-x+2

=>2x<>1

=>x<>1/2

g: ĐKXĐ: x+1>0 và x+2>=0 và x^2-4<>0

=>x>-2 và x>-1 và x<>2; x<>-2

=>x>-1; x<>2

f: ĐKXĐ: x+1>=0 và 7-2x>=0 và x+1<>7-2x

=>3x<>6 và -1<=x<=7/2

=>x<>2 và -1<=x<=7/2

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

a. ĐKXĐ: $x^3-x\neq 0$

$\Leftrightarrow x(x-1)(x+1)\neq 0$

$\Leftrightarrow x\neq 0;\pm 1$

Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{0;\pm 1\right\}\)

b.

ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ |x|-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq \pm 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 1\end{matrix}\right.\)

TXĐ:

\([0;+\infty)\setminus \left\{1\right\}\)

c.

ĐKXĐ: \(x^2-1\neq 0\Leftrightarrow x\neq \pm 1\)

TXĐ: \(\mathbb{R}\setminus \left\{\pm 1\right\}\)

NV
12 tháng 7 2021

d.

ĐKXĐ: \(x\left|x\right|-4>0\)

\(\Leftrightarrow x\left|x\right|>4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x^2>4\end{matrix}\right.\) \(\Leftrightarrow x>2\)

e.

ĐKXĐ: \(\left|x^2-2x\right|+\left|x-1\right|\ne0\)

Ta có:

\(\left|x^2-2x\right|+\left|x-1\right|=0\Leftrightarrow\left\{{}\begin{matrix}x^2-2x=0\\x-1=0\end{matrix}\right.\) (ko tồn tại x thỏa mãn)

\(\Rightarrow\) Hàm xác định với mọi x hay \(D=R\)

NV
12 tháng 7 2021

f.

ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\left|x\right|+4\ne0\end{matrix}\right.\)

Xét \(x\left|x\right|+4=0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4=0\left(vn\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=-2\)

Hay \(x\left|x\right|+4\ne0\Leftrightarrow x\ne-2\)

Kết hợp với \(x\ge-2\Rightarrow x>-2\)

22 tháng 10 2021

TXĐ: \(D=[2;+\infty)\)

ĐKXĐ: \(\left\{{}\begin{matrix}x\le0\\x\notin\left\{1;-1\right\}\end{matrix}\right.\)

Vậy: D=(-∞;0]\{-1}