K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow x=3k;y=5k\)

Thay x=3k;y=5k vào biểu thức C(x;y) ta có:

\(C\left(x;y\right)=\dfrac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}\)

\(=\dfrac{5.9.k^2+3.25.k^2}{10.9.k^2-3.25.k^2}\)

\(=\dfrac{45k^2+75k^2}{90k^2-75k^2}\)

\(=\dfrac{120k^2}{15k^2}=\dfrac{120}{15}=8\)

Vậy giá trị của biểu thức C(x;y) là 8

Chúc bạn học học tốt nha!!!

9 tháng 4 2017

không có j Trịnh Công Mạnh Đồng

24 tháng 8 2017

Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)

\(C=\dfrac{5x^2+3y^2}{10x^2-3y^2}=\dfrac{45k^2+75k^2}{90k^2-75k^2}=\dfrac{120k^2}{15k^2}=8\)

Vậy C = 8

24 tháng 8 2017

Đặt:

\(\dfrac{x}{3}=\dfrac{y}{5}=k\) \(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)

Thay vào \(C\) ta có:

\(C=\dfrac{5x^2+3y^2}{10x^2-3y^2}=\dfrac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}=\dfrac{45k^2+75k^2}{90k^2-75k^2}=\dfrac{120k^2}{15k^2}=\dfrac{120}{15}=8\)

18 tháng 1 2018

Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}\)

Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\) (k \(\ne\) 0)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)

Mà A = \(\dfrac{5x^2+3y^2}{10x^2-3y^2}\) (bài cho)

\(\Rightarrow\) A = \(\dfrac{5\left(3k\right)^2+3\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}\)

\(\Leftrightarrow\) A = \(\dfrac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}\)

\(\Leftrightarrow\) A = \(\dfrac{45k^2+75k^2}{90k^2-75k^2}\)

\(\Leftrightarrow\) A = \(\dfrac{120k^2}{15k^2}\)

\(\Leftrightarrow\) A = \(\dfrac{120}{15}\)

\(\Leftrightarrow\) A = 8

Vậy A = 8

18 tháng 1 2018

thank

15 tháng 4 2017

Từ \(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)

Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)

Khi đó \(P=\dfrac{5x^2+3y^2}{10x^2-3y^2}=\dfrac{5\cdot\left(3k\right)^2+3\cdot\left(5k\right)^2}{10\cdot\left(3k\right)^2-3\cdot\left(5k\right)^2}\)

\(=\dfrac{5\cdot9k^2+3\cdot25k^2}{10\cdot9k^2-3\cdot25k^2}=\dfrac{45k^2+75k^2}{90k^2-75k^2}\)

\(=\dfrac{120k^2}{15k^2}=\dfrac{120}{15}=8\)

15 tháng 4 2017

Ta có:

x/3=y/5

=> x=3/5y

Thay x vào P ta được P

9 tháng 8 2017

Giải:
Ta có: \(\dfrac{3x-2y}{5}=\dfrac{5y-3z}{2}=\dfrac{2z-5x}{2}\)

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}=\dfrac{15x-10y+10y-6z+6z-15x}{25+4+6}=0\)

\(\Rightarrow\left\{{}\begin{matrix}15x-10y=0\\10y-6z=0\\6z-15x=0\end{matrix}\right.\Rightarrow15x=10y=6z\)

\(\Rightarrow\dfrac{15x}{30}=\dfrac{10y}{30}=\dfrac{6z}{30}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}=\dfrac{10x-3y-2z}{20-9-10}=\dfrac{5}{1}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=10\\y=15\\z=25\end{matrix}\right.\)

Vậy...

9 tháng 8 2017

\(\dfrac{3x-2y}{5}=\dfrac{5y-3z}{2}=\dfrac{2z-5x}{2}\)

\(\Rightarrow\dfrac{5\left(3x-2y\right)}{25}=\dfrac{2\left(5y-3z\right)}{4}=\dfrac{3\left(2z-5x\right)}{6}\)

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)

\(=\dfrac{15x-10y+10y-6z+6z-15x}{25+4+6}\)

\(=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\5y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{5}\\2z=5x\Rightarrow\dfrac{z}{5}=\dfrac{x}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

\(\Rightarrow\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}=\dfrac{10x-3y-2z}{20-9-10}=\dfrac{5}{1}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.2=10\\y=5.3=15\\z=5.5=25\end{matrix}\right.\)

9 tháng 4 2017

Không biết vô tình hay cố ý

sửa đề đi --> nếu cố ý thì nên bỏ đi đường làm vậy, không hay gì đâu

chốt lại cái đề

\(C=\dfrac{5^2+3y^2}{10x^2-3y^2}\)

chắc ghi đề nhầm sr

12 tháng 3 2022

Ta có \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow x=3k;y=5k\)

Thay vào ta được 

\(A=\dfrac{5.9k^2+3.25k^2}{5.9k^2-25k^2}=\dfrac{\left(45+75\right)k^2}{20k^2}=\dfrac{120}{20}=6\)

12 tháng 3 2022

em cảm ơn ạ

28 tháng 5 2018

\(a,Đặt\dfrac{x}{y}=\dfrac{2}{3}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\\ A=\dfrac{2x-3y}{x-5y}=\dfrac{2\cdot2k-3\cdot3k}{2k-5\cdot3k}\\ =\dfrac{4k-9k}{2k-15k} \\ =\dfrac{5k}{13k}\\ =\dfrac{5}{13}\)

\(b,Thayx-y=7vàoB,tacó:\\ B=\dfrac{2x+7}{3x-y}+\dfrac{2y-7}{3y-x}\\ =\dfrac{2x+x-y}{3x-y}+\dfrac{2y-x+y}{3y-x}\\ =\dfrac{3x-y}{3x-y}+\dfrac{3y-x}{3y-x}\\ =1+1\\ =2\)

\(c,Đặt\dfrac{x}{3}=\dfrac{y}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\\ C=\dfrac{5x^2+3y^2}{10x^2-3y^2}\\ =\dfrac{5\left(3k\right)^2+3\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}\\ =\dfrac{45k^2+75k^2}{90k^2-75k^2}\\ =\dfrac{120k^2}{15k^2}\\ =8\)

\(d,\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=k\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=7k\end{matrix}\right.\\ D=\dfrac{5a-b}{3a-2b}\\ =\dfrac{5\cdot5k-7k}{3\cdot5k-2\cdot7k}\\ =\dfrac{25k-7k}{15k-14k}\\ =\dfrac{18k}{k}=18\)

\(e,Thayx-y=5vàoE,tacó:\\ E=\dfrac{3x-5}{2x+y}-\dfrac{4y+5}{x+3y}\\ =\dfrac{3x-x+y}{2x+y}-\dfrac{4y+x-y}{x+3y}\\ =\dfrac{2x+y}{2x+y}-\dfrac{3y+x}{x+3y}\\ =1-1=0\)