Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{30\times25\times7\times8}{75\times8\times12\times14}=\dfrac{3\times2\times5\times25\times7\times8}{25\times3\times8\times3\times4\times2\times7}=\dfrac{5}{3\times4}=\dfrac{5}{12}\)
b) \(\dfrac{8\times3\times4}{16\times3}=\dfrac{8\times3\times2\times2}{8\times2\times3}=2\)
c) \(\dfrac{4\times5\times6}{3\times10\times8}=\dfrac{4\times5\times3\times2}{3\times5\times2\times4\times2}=\dfrac{1}{2}\)
a) \(\dfrac{3}{7}+4=\dfrac{3}{7}+\dfrac{4}{1}=\dfrac{3}{7}+\dfrac{28}{7}=\dfrac{31}{7}\)
b) \(\dfrac{5}{9}\times3=\dfrac{5\times3}{9}=\dfrac{15}{9}=\dfrac{5}{3}\)
c) \(\dfrac{7}{8}-\dfrac{2}{9}=\dfrac{63}{72}-\dfrac{16}{72}=\dfrac{47}{72}\)
d) \(5-\dfrac{3}{4}=\dfrac{5}{1}-\dfrac{3}{4}=\dfrac{20}{4}-\dfrac{3}{4}=\dfrac{17}{4}\)
e) \(\dfrac{5}{7}:6=\dfrac{5}{7}:\dfrac{6}{1}=\dfrac{5}{7}\times\dfrac{1}{6}=\dfrac{5}{42}\)
f) \(\dfrac{5}{6}\times\dfrac{2}{7}=\dfrac{5\times2}{6\times7}=\dfrac{10}{42}=\dfrac{5}{21}\)
g) \(3+\dfrac{3}{4}=\dfrac{3}{1}+\dfrac{3}{4}=\dfrac{12}{4}+\dfrac{3}{4}=\dfrac{15}{4}\)
h) \(\dfrac{3}{5}\times\dfrac{4}{8}=\dfrac{3\times4}{5\times8}=\dfrac{12}{40}=\dfrac{3}{10}\)
i) \(5:\dfrac{3}{8}=\dfrac{5}{1}:\dfrac{3}{8}=\dfrac{5}{1}\times\dfrac{8}{3}=\dfrac{40}{3}\)
\(\dfrac{3}{7}+\dfrac{4}{1}=\dfrac{3}{7}+\dfrac{28}{7}=\dfrac{31}{7}\)
\(\dfrac{5}{9}\times3=\dfrac{5}{9}\times\dfrac{3}{1}=\dfrac{15}{9}=\dfrac{5}{3}\)
\(\dfrac{7}{8}-\dfrac{2}{9}=\dfrac{63}{72}-\dfrac{16}{72}=\dfrac{47}{72}\)
\(\dfrac{5}{1}-\dfrac{3}{4}=\dfrac{20}{4}-\dfrac{3}{4}=\dfrac{17}{4}\)
\(\dfrac{5}{7}:\dfrac{6}{1}=\dfrac{5}{7}\times\dfrac{1}{6}=\dfrac{5}{42}\)
\(\dfrac{5}{6}\times\dfrac{2}{7}=\dfrac{5\times2}{6\times7}=\dfrac{10}{42}=\dfrac{5}{21}\)
\(\dfrac{3}{1}+\dfrac{3}{4}=\dfrac{12}{4}+\dfrac{3}{4}=\dfrac{15}{4}\)
\(\dfrac{3}{5}\times\dfrac{4}{8}=\dfrac{3}{5}\times\dfrac{1}{2}=\dfrac{3\times1}{5\times2}=\dfrac{3}{10}\)
\(\dfrac{5}{1}:\dfrac{3}{8}=\dfrac{5}{1}\times\dfrac{8}{3}=\dfrac{40}{3}\)
\(B=\dfrac{1}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{97\cdot100}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{99}{100}=\dfrac{33}{100}\)
\(3\times B=\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+....+\dfrac{3}{97\times100}\)
\(3\times B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
\(3\times B=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(B=\dfrac{33}{100}\)
\(=\dfrac{4}{7}\)