K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>\(\dfrac{400}{x+1}-\dfrac{300}{x}=1\)

=>\(\dfrac{400x-300x-300}{x\left(x+1\right)}=1\)

=>x(x+1)=100x-300

=>x^2+x-100x+300=0

=>x^2-99x+300=0

=>\(\left[{}\begin{matrix}x\simeq95,87\\x\simeq3,13\end{matrix}\right.\)

1 tháng 2 2021

 

Ta có: \(\left\{{}\begin{matrix}x-y=10\\\dfrac{300}{y}-\dfrac{300}{x}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\\dfrac{300}{y}-\dfrac{300}{10+y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\\dfrac{300\left(y+10\right)}{y\left(y+10\right)}-\dfrac{300y}{y\left(y+10\right)}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\300y+3000-300y=y\left(y+10\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\y^2+10y-3000=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\y^2+10y+25-3025=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\\left(y+5\right)^2=3025\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y+10\\x=y+10\end{matrix}\right.\\\left[{}\begin{matrix}y+5=55\\y+5=-55\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=50+10=60\\x=-60+10=-50\end{matrix}\right.\\\left[{}\begin{matrix}y=50\\y=-60\end{matrix}\right.\end{matrix}\right.\)

Vậy: Hệ phương trình có hai cặp nghiệm là (x,y)\(\in\){(-50;-60);(60;50)}

a: \(\Leftrightarrow x^2+x+1-3x^2=2x\left(x-1\right)\)

=>-2x^2+x+1-2x^2+2x=0

=>-4x^2+3x+1=0

=>4x^2-3x-1=0

=>4x^2-4x+x-1=0

=>(x-1)(4x+1)=0

=>x=1(loại) hoặc x=-1/4(nhận)

b: \(\Leftrightarrow\dfrac{440}{x-2}-\dfrac{440}{x}=1\)

=>x(x-2)=440x-440x+880

=>x^2-2x-880=0

=>\(x=1\pm\sqrt{881}\)

c: \(\Leftrightarrow\dfrac{x+5+x}{x\left(x+5\right)}=\dfrac{1}{6}\)

=>x^2+5x=6(2x+5)

=>x^2+5x-12x-30=0

=>x^2-7x-30=0

=>(x-10)(x+3)=0

=>x=10 hoặc x=-3

d: =>(x-1)(x+1)-x=2x-1

=>x^2-1-x=2x-1

=>x^2-x-2x=0

=>x(x-3)=0

=>x=0(loại) hoặc x=3(nhận)

Đặt $ X = a - b; Y = b - c; Z = c - a \Rightarrow X + Y + Z = 0$Với X + Y + Z = 0, ta chứng minh được :$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$Thật vậy, ta có :$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + \dfrac{2}{XY} + \dfrac{2}{YZ} + \dfrac{2}{ZX}$$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + 2.\dfrac{X + Y + Z}{XYZ}$$ = \dfrac{1}{X^2} +...
Đọc tiếp

Đặt $ X = a - b; Y = b - c; Z = c - a \Rightarrow X + Y + Z = 0$

Với X + Y + Z = 0, ta chứng minh được :
$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$

Thật vậy, ta có :

$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + \dfrac{2}{XY} + \dfrac{2}{YZ} + \dfrac{2}{ZX}$

$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + 2.\dfrac{X + Y + Z}{XYZ}$

$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$ ( do X + Y + Z = 0)

$ \Rightarrow \sqrt{\dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}} = \sqrt{( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2} = |\dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z}|$

Suy ra : $ \sqrt{\dfrac{1}{(a - b)^2} + \dfrac{1}{(b - c)^2} +\dfrac{1}{( c - a)^2}} = |\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$

Do a, b, c là số hữu tỷ nên $|\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$ cũng là số hữu tỷ. Ta có điều phải chứng minh.

1
10 tháng 9 2017

ngu như con lợn

11 tháng 8 2021

nãy đăng ảnh nhưng không hiện, lại phải mất công đánh lại :Đ

 

a: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

b: Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{x-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

 

Câu 3: 

\(L=\left(\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)^2\cdot\left(\sqrt{a}-1\right)}\right)\cdot\dfrac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\dfrac{a-\sqrt{a}-2-\left(a+\sqrt{a}-2\right)}{a-1}\cdot\dfrac{1}{\sqrt{a}}=\dfrac{-2}{a-1}\)