K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2023

\(\dfrac{2n+1+3n-5-4n+5}{n-3}=\dfrac{n+1}{n-3}\)

27 tháng 4 2023

Làm rõ chi tiết chút nha mọi người help em 1 mạng đi 

a: Để A nguyên thì \(2n+1\inƯ\left(10\right)\)

mà n nguyên

nên \(2n+1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{0;-1;2;-3\right\}\)

b: B nguyên thì 3n+5-5 chia hết cho 3n+5

=>\(3n+5\inƯ\left(-5\right)\)

mà n nguyên

nên \(3n+5\in\left\{-1;5\right\}\)

=>n=-2 hoặc n=0

c: Để C nguyên thì 4n-6+16 chia hết cho 2n-3

=>\(2n-3\in\left\{1;-1\right\}\)

=>\(n\in\left\{2;1\right\}\)

11 tháng 5 2022

a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-31-12-24-4
n42517-1

 

11 tháng 5 2022

a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)

\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)

\(A=\dfrac{n+1}{n-3}\)

\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)

\(A=1+\dfrac{4}{n-3}\)

Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-3=1 --> n=4

n-3=-1 --> n=2

n-3=2 --> n=5

n-3=-2 --> n=1

n-3=4 --> n=7

n-3=-4 --> n=-1

Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên

b.hemm bt lèm:vv

AH
Akai Haruma
Giáo viên
17 tháng 4 2022

Lời giải:

a/

Gọi ƯCLN(n+1, 2n+3)=d$ 

Khi đó:

$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$

$2n+3\vdots d(2)$

Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản. 

Câu b,c làm tương tự.

4 tháng 4 2017

Làm luôn nha không ghi đề xin lỗi

a)A=\(\dfrac{2.n+1+3.n+5-4.n+5}{n-3}\)

A=\(\dfrac{5.n+6-4.n+5}{n-3}\)

A=\(\dfrac{n+1}{n-3}\)

A=\(\dfrac{n-3+4}{n-3}\)

A=\(\dfrac{n-3}{n-3}\)+\(\dfrac{4}{n-3}\)

A=1+\(\dfrac{4}{n-3}\)

Để A nguyên thì 4\(⋮\)n-3 hay n-3\(\in\)Ư(4).Ta có bảng sau:

n-3 1 2 4 -1 -2 -4
n 4 5 7 2 1

-1

Vậy n\(\in\){ 4;5;7;2;1;-1)

b)Ta có A=\(\dfrac{n+1}{n-3}\)

Gọi ước nguyên tố của n+1 và n-3 là d

Ta có n+1\(⋮\)d

n+3\(⋮\)d

\(\Rightarrow\)n-3-n-1\(⋮\)d

\(\Rightarrow\)4\(⋮\)d

Vì d là ước nguyên tố nên d=2

Ta có n+1\(⋮\)d

n-3\(⋮\)d

\(\Rightarrow\)n+1-2\(⋮\)d

n-1\(⋮\)2

\(\Rightarrow\)n=2.k+1

Vậy n\(\ne\)2.k+1 hay n là số chẵn thì A là phân số tối giản

4 tháng 4 2017

Lý giải câu b vì sao lại ước nguyên tố :Do là phân số tối giản nên số nguyên tố sẽ không chia hết cho bất kì số nào nên mới làm A tối giản được

Có hiểu không bạn,chắc không hiểu

a:

Sửa đề: \(\dfrac{n+1}{2n+3}\)

Gọi d=ƯCLN(n+1;2n+3)

=>2n+2-2n-3 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

b: Gọi d=ƯCLN(4n+8;2n+3)

=>4n+8-4n-6 chia hết cho d

=>2 chia hêt cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

13 tháng 3 2018

*Để A là phân số thì \(n-3\ne0\Rightarrow\) \(n\ne3\) (\(n\in Z\))

*Ta có: \(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}=\dfrac{2n+1+3n-5-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\)

\(\Rightarrow\) \(A\in Z\) khi \(\dfrac{4}{n-3}\in Z\)

\(\Rightarrow4⋮n-3\)

hay \(n-3\inƯ\left(4\right)\)

\(\Rightarrow\) \(n-3\in\left\{-4;-2;-1;1;2;4\right\}\)

Ta có bảng sau:

n-3 -4 -2 -1 1 2 4
n -1 1 2 4 5 7

Vậy \(n\in\left\{-1;1;2;4;5;7\right\}\)

15 tháng 3 2018

n thuộc { 1,-1,2,-2,4,-4}

14 tháng 6 2017

a, Gọi d là ước chung của 21n + 4 và 14n + 3 \(\left(d\in Z,d\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\)

+) Vì : \(21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)

+) Vì : \(14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow42n+9-48n-8⋮d\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{1;-1\right\}\) => \(\dfrac{21n+4}{14n+3}\) là phân số tối giản

b, tương tự

c, Gọi d là ước chung của 2n + 3 và n2 + 3n + 2 \(\left(d\in Z,d\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\n^2+3n+2⋮d\end{matrix}\right.\)

+) Vì \(2n+3⋮d\Rightarrow n\left(2n+3\right)⋮d\Rightarrow2n^2+3n⋮d\)

+) Vì : \(n^2+3n+2⋮d\Rightarrow2\left(n^2+3n+2\right)⋮d\Rightarrow2n^2+6n+4⋮d\)

Mà : \(2n^2+3n⋮d\)

\(\Rightarrow\left(2n^2+6n+4\right)-\left(2n^2+3n\right)⋮d\)

\(\Rightarrow2n^2+6n+4-2n^2-3n⋮d\Rightarrow3n+4⋮d\)

\(\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\)

Vì : \(2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\)

\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)

\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{-1;1\right\}\Rightarrow\dfrac{2n+3}{n^2+3n+2}\) là phân số tối giản

d, tương tự câu c

15 tháng 6 2017

Mình làm 1 câu thôi các câu sau bạn làm theo mẫu nhé

Gọi d là UCLN(21n+4;14n+3)

\(\Leftrightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)

\(\Leftrightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)

\(42n+8;42n+9⋮d\)

\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow\dfrac{21n+4}{14n+3}\)tối giản với mọi n

29 tháng 4 2017

BÀi 1

Để A \(\in\) Z

=>\(\left(n+2\right)⋮\left(n-5\right)\)

=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)

=>\(7⋮\left(n-5\right)\)

=>\(n-5\in\left\{1;7;-1;-7\right\}\)

=>\(n\in\left\{6;13;4;-2\right\}\)

Vậy \(n\in\left\{6;13;4;-2\right\}\)

29 tháng 4 2017

Giúp mk nha

Arigatou gozaimasu!