Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(^{n^{ }2}\)+n+1589
=( \(^{n^{ }2}\)+n+\(\dfrac{1}{4}\))+\(\dfrac{6355}{4}\)
=(n+\(\dfrac{1}{2}\))^2+\(\dfrac{6355}{4}\)
Đặt n+\(\dfrac{1}{2}\)= a => \(a^2\)+\(\dfrac{6355}{4}\)=\(b^2\)
Tự giải a sau đó suy ra n=a -\(\dfrac{1}{2}\)
Tổng của tất cả các số tự nhiên có thể n sao cho :n2+n+1589 là một hình vuông hoàn hảo ?
là đề bài cho
câu 7 mk bấm nhầm đáp án là 120
qua B kẻ đường thẳng song song với AM cắt AC ở N.
vì AM là phân giác góc BAC nên có :
\(\dfrac{AC}{AB}=\dfrac{CM}{BM}=\dfrac{12}{6}=2\) suy ra \(\dfrac{CM}{BC}=\dfrac{CM}{CM+BM}=\dfrac{12}{12+6}=\dfrac{2}{3}\)
vì AM song song với BN nên có :
1,\(\dfrac{CA}{AN}=\dfrac{CM}{BM}=\dfrac{12}{AN}=2\) suy ra AN=6
2,\(\dfrac{AM}{BN}=\dfrac{CM}{BC}=\dfrac{2}{3}=\dfrac{4}{BN}\)suy ra BN=6
vì AB=6 nên tam giác ABN đều
suy ra \(\widehat{NAB}\)=\(60^0\)
mà \(\widehat{NAB}+\widehat{BAC}=\)\(180^0\)
nên \(\widehat{BAC}=\)\(120^0\)
Ta có: \(pq+q=13+q^2\Leftrightarrow q\left(p+1\right)=13+q^2\)
Vì\(q^2⋮q\Leftrightarrow13⋮q\Leftrightarrow\left[{}\begin{matrix}q=1\\q=13\end{matrix}\right.\)
Nếu q =1 thì:\(p+1=14\Leftrightarrow p=13\)
\(\Rightarrow pq=13\left(cm^2\right)\)(1)
Nếu q=13 thì:\(13p+13=182\Leftrightarrow p=13\)
\(\Rightarrow pq=169\left(cm^2\right)\)(2)
Từ (1)(2) ta có: \(max\left(pq\right)=169\left(cm^2\right)\)
Bạn xem hộ mình sai ở đâu k