Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi ab là số cần tìm (điều kiện bạn tự cho)
theo đề ta có: 8(a+b) - ab= 8
8a+8b-10a-b=8
-2a + 7b=8
7b-2a =8
2a=7b-8
a=\(\frac{7b-8}{2}\)
ta có: \(a\in N\)
=> \(\frac{7b-8}{2}\in N\) hay 7b-8 chia hết cho 2=> b chia hết cho 2
xét b=2 => a=3 => ab= 32 (chọn)
xét b=4=> a=10 (loại vì \(0\le b\le9,a\in N\))
vậy số cần tìm là 32
hơi vắn tắt , có gì bạn thêm vào để đầy đủ nha
Do 2n+1 là số chính phương lẻ nên 2n+1 chia cho 8 dư 1.
=> n chia hết cho 4. => 3n+1 cũng là một số chính phương lẻ(Do 3n+1 là số chính phương).
=> 3n+1 chia cho 8 dư 1. => 3n chia hết cho 8.
=> n chia hết cho 8( Do (3,8)=1). (1)
-Ta có: 2n+1 và 3n+1 là hai đô chính phương. +Nếu n chia cho 5 dư 4=> 3n+1 chia cho 5 dư 3. => Loại do
số chính phương chia cho 5 chỉ dư 0;1;4. +Nếu n chia cho 5 dư 3=> 2n+1 chia cho 5 dư 2. => Loại.
+Nếu n chia cho 5 dư 2=> 3n+1 chia cho 5 dư 2. => Loại.
+Nếu n chia cho 5 dư 1=> 2n+1 chia cho 5 dư 3. => Loại.
-Từ 4 điều trên và n có tồn tại => n chia hết cho 5. (2)
-Từ (1);(2) => n chia hết cho 8.5= 40.( Do (8,5)=1).
=>n=40 hoặc n=80
Với n=40 =>2n+1 là số chính phương
Với n=80 =>2n+1 không phải là số chính phương
Vậy n=40
Nếu trong 11 số tự nhiên đó có 1 số chia hết cho 10 thì bài toán đã được chứng minh.
Nếu trong 11 số đã cho, không có số nào chia hết cho 10, ta đặt:
A1= 1
A2= 1+2
A3= 1+2+3
...
A11= 1+2+3+...+10+11
Ta biết rằng, trong 1 phép chia cho 10, ta luôn nhận được 10 số dư từ 0->9
Vì ta có 11 dãy số nên ít nhất có 2 dãy số có cùng số dư trong phép chia cho 10.
Giả sử, dãy Bm và Bn có cùng số dư trong phép chia cho 10 thì ( Bm - Bn ) chia hết cho 10. => đpcm.
1. Xét số ab với a từ 0 đến 14 và b từ 0 đến 9. Vậy tổng của b (các chữ số hàng đơn vị) là 45*15=630. Tổng của các chữ số của a là 45+15. Với 45 là tổng các chữ số từ 0 đến 9, 15 là tổng các chữ số từ 10 đến 14. Và số 150 có tổng giá trị chữ số là 6. Vậy có tổng cộng 630+45+15+6=696
2.Tổng các chữ số: 4x2013=8052 và 8+5+0+2=15 số này chia hết cho 3 nên chia cho 15 sẽ dư là 1 số chia hết cho 3
Số này tận cùng là 4 nên chia cho 5 sẽ dư 4(không chia hết cho 3 vậy chia cho 15 dư 4+5=9 ( chia hết cho 3; nếu dư là 9+4=14 cũng không chia hết cho 3
Kết luận:Số dư là 9
3.không bít
4.Gọi a và b lần lượt là chữ số hàng chục và hàng đơn vị của số đó.Vậy số đó là 10a+b (a,b là số tự nhiên nhỏ hơn 10 và a#0).
(10a+b)/(a+b)=(10a+10b-9b)/(a+b)=
=10-9b/(a+b).
Hiệu này lớn nhất bằng 10 khi b=0 (a tùy ý)
Vậy bài này có 9 đáp án là 10,20,30,...,90.
2)a/b=a+b/10 (a,b là số tự nhiên nhỏ hơn 10 và b#0).
Vì b>=1 nên a/b<=a<a+b/10 =>pt trên vô nghiệm
Không có 2 chữ số a,b nào thỏa mãn ĐK bài toán.
1.Ta kết hợp 1 với 98 , 2 với 97 , 3 với 96 ......thành từng cặp có tổng bằng 99 thì mỗi tổng như vậy
có tổng các chữ số là 18 ( do 9 + 9 )
Có tất cả 49 tổng như vậy cộng thêm số 99 như vậy tổng các chữ số của số 1 2 3 4 5 6........98 99
là 18 * 50 = 900
Lại có : Ta kết hợp 100 với 149 , 101 với 148 , 102 với 147 ......thành từng cặp có tổng bằng 249
thì mỗi tổng như vậy có tổng các chữ số là 115 ( do 2+ 4 + 9 )
Có tất cả 25 tổng như vậy nên tổng các chữ số của số 100 101 102........147 148 149 là
15 * 25 = 375
Số 150 có tổng các chữ số là 6
Vậy có 900 + 375 + 6 = 1281
2.Ta gọi r là số dư của A khi chia A cho 15 => A = 15k + r (0 <= r <15).
Lại thấy A chia hết cho 3 (tổng các chữ số của A chia hết cho 3), theo tính chất chia hết của một tổng thì r phải chia hết cho 3 => r = 0, 3, 6, 9, 12. Dễ thấy A chia 5 dư 4 (vì A = 444...440 + 4) nên r chia 5 phải dư 4 (vì 15k đã chia hết cho 5), trong các số 0, 3, 6, 9, 12 thì chỉ có 9 chia 5 dư 4
VẬY số dư của A khi chia cho 15 là 9.
3.
4.gọi số đó là ab, a là hàng chục, b là hàng đơn vị; thế thì a, b là số tự nhiên 1≤a≤9 và 0≤b≤9,
ab/(a+b) là lớn nhất khi a+b nhỏ nhất khi a=1, b=0 vậy số đó là 10
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
sorry