Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại A, B=60.
⇒ Tam giác ABC là 1 nửa tam giác đều
⇒AB = \(\frac{BC}{2}\) =4cm.
AC=12‐4=8cm
Vậy AB=4cm
AC=8cm
Kẻ: \(AH\perp BC\).Đặt \(AB=2x\Rightarrow BH=x\Rightarrow AH=x\sqrt{3};HC=8-x\)
Áp dụng định lí Pi-ta-go có:
\(AC=\sqrt{\left(x\sqrt{3}\right)^2+\left(8-x\right)^2}=\sqrt{4x^2-16x+64}\)
Do \(AB+AC=12\Rightarrow2x+\sqrt{4x^2-16x+64}=12\)
Giải phương trình có x = 2,5
\(\Rightarrow AB=2x=2.2,5=5cm\)
Thay số vào tính được AC =))
Vẽ BH vuông góc với AC
Theo định lý Pythagore, ta có:
BC2=BH2+CH2=BH2+(AC-AH)2
=BH2+AH2+AC2-2AC.AH
Mà ta lại có:AH2+BH2=AB2 (định lý Pythagore, tam giác ABH vuông tại H)
và AH=1/2AB (do tam giác ABH là nửa tam giác đều)
Cho nên: BC2=AB2+AC2-2.1/2AB.AC=AB2+AC2-AB.AC (*)
Thay AB=28cm, AC=35cm vào (*), ta được:
BC2=1029=>BC=7\(\sqrt{21}\)cm
Vậy BC=7\(\sqrt{21}\)cm
Dựng AH vuông góc với BC, đặt AB = x, ta có : AH = x.sin B = x.sin60 = x.căn 3 / 2
HB = x.cos 60 = x/2 => HC = BC - HB = 8 - x/2 = (16 - x)/2
AC = 12 - AB = 12 - x
Trong tam giác vuông AHC : AH^2 + HC^2 = AC^2
hay (x. căn 3 /2)^2 + (16 - x)^2/4 = (12 - x)^2
<=> 3x^2 + (16 - x)^2 = 4(12 - x)^2
Giải phương trình này tìm được x = 5
Đặt cạnh BC=a=8; AB=c; AC=b
Kẻ đường cao AH. Xét tg vuông ABH có ^BAH=90-^B=90-60=30
=> BH=AB/2=c/2 (trong tg vuông cạnh đối diện góc 30 =1/2 cạnh huyền)
\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{c^2-\frac{c^2}{4}}=\frac{c\sqrt{3}}{2}.\)
\(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}.8.\frac{c\sqrt{3}}{2}=2c\sqrt{3}\)
Nửa chu vi p=(a+b+c)/2=(8+12)/2=10
Áp dụng công thức he rông
\(S_{ABC}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{10\left(10-8\right)\left(10-b\right)\left(10-c\right)}\)
\(=\sqrt{20\left(100-10c-10b+bc\right)}=\sqrt{20\left(100-10\left(c+b\right)+bc\right)}\)
\(=\sqrt{20\left(100-10.12+bc\right)}=\sqrt{20\left(bc-20\right)}=2c\sqrt{3}\)
Bình phương 2 vê \(20\left(bc-20\right)=12c^2\) (*)
Thay b=12-c vào (*) rồi giải PT bậc 2 tìm c từ đó suy ra b. Bạn tự làm nốt nhé, chúc học tốt!
T