K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

Đáp án A

Mệnh đề đúng 1,3

11 tháng 5 2018

Đáp án B

Cách1: Tư duy tự luận

Hàm số liên tục tại điểm x = 1  khi  lim x → 1 f x = f 1   .

Ta có f 1 = k  và  lim x → 1 f x = lim x → 1 x 2016 + x − 2 2018 x + 1 − x + 2018   .

= lim x → 1 x 2016 − x + 2 x − 1 2018 x + 1 + x + 2018 2018 x + 1 − x + 2018 2018 x + 1 + x + 2018

= lim x → 1 x x − 1 x 2014 + x 2013 + ... + x + 1 + 2 2018 x + 1 + x + 2018 2017 x − 1

= lim x → 1 x x 2014 + x 2013 + ... + x + 1 + 2 2018 x + 1 + x + 2018 2017 = 2015 + 2 .2 1019 2017

= 2 2019

Vậy để hàm số liên tục tại điểm x=1 khi k = 2 2019

Cách 2: Tư duy tự luận (tính giới hạn bằng công thức L’Hospital)

Ta có 

lim x → 1 f x = lim x → 1 x 2016 + x − 2 2018 x + 1 − x + 2018 = lim x → 1 2016 x 2015 + 1 1009 2018 x + 1 − 1 2 x + 2018

= 2016 + 1 1009 2019 − 1 2 2019 = 2 2019

Hàm số liên tục tại điểm x=1 khi  lim x → 1 f x = f 1 ⇔ k = 2 2019   .

Cách 3: Sử dụng máy tính cầm tay (casio và vinacal)

lim x → 1 f x = lim x → 1 x 2016 + x − 2 2018 x + 1 − x + 2018 = 2 2019 .

Hàm số liên tục tại điểm x=1 khi lim x → 1 f x = f 1 ⇔ k = 2 2019 .

23 tháng 9 2017

Đáp án A.

Mệnh đề 3 sai ví dụ hàm số y=|x| liên tục tại x = 0 nhưng không có đạo hàm tại điểm đó.

 

Mệnh đề 4 đúng vì nếu hàm số y=f(x) có đạo hàm trên [a;b] thì hàm số liên tục trên [a;b] do đó hàm số có nguyên hàm trên [a;b]

8 tháng 12 2018

Đáp án B

Để f(x) liên tục tại x = 1 thì lim x → 1 f ( x ) = f ( 1 ) . Ta có:

lim x → 1 f ( x ) = l i m x 2016 + x - 1 2018 x + 1 - x + 2018 = lim x → 1 2016 x + 1 1009 2018 x + 1 - 1 2 x + 2018 = 2 2019  

Vậy k = 2 2019 .

17 tháng 3 2019

Chọn C

12 tháng 1 2018

Đáp án C.

Hàm số liên tục nếu:

lim x → − 2 + f x = lim x → − 2 − f x = f 2 ⇔ 3. − 2 − 5 = − 2 a − 1 ⇔ a = 5.

28 tháng 8 2017

16 tháng 2 2019

Đáp án đúng : D

4 tháng 6 2018

Đáp án A