Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu\(a^3+b^3+c^3=3abc\Rightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
Thật vậy:\(a+b+c=0\Rightarrow a+b=-c\\ \Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Rightarrow a^3+b^3+c^3=3abc\)
Tương tự \(a=b=c\Rightarrow\orbr{\begin{cases}3abc=3a^3\\a^3+b^3+c^3=3a^3\end{cases}\Rightarrow a^3+b^3+c^3=3abc}\)
Áp dụng ta có:\(\orbr{\begin{cases}xy+yz+zx=0\\xy=yz=zx\Rightarrow x=y=z\end{cases}}\)
Khi x=y=z,ta có P=(1+1)(1+1)(1+1)=8
Khi xy+yz+zx=0,ta có:\(xy+yz=-zx\)
Tương tự:\(yz+zx=-xy\)
\(xy+zx=-yz\)
Ta có \(P=2+\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}=2+\frac{xz+yz}{z^2}+\frac{xy+xz}{x^2}+\frac{zy+xy}{y^2}\)\(=2-\left(\frac{z}{x}+\frac{x}{y}+\frac{y}{z}\right)\)\(=2-\frac{xy+yz+zx}{xyz}=2-\frac{0}{xyz}=2\)
Vậy P=8 khi x=y=z
P=2 khi xy+yz+zx=0
Ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\frac{yz+zx+xy}{xyz}=0\) (Quy đồng)
\(\Rightarrow yz+zx+xy=0\)
Vì:
\(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)
\(2\left(x^4y^{ }^4+y^4z^4+z^4x^4\right)=0\)
Nên.....(tự kết luận nha)
giải chi tiết ( vì sao ) đoạn dưới đây = 0 hộ mk vs :
vì \(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)
\(2\left(x^4y^4+y^4z^4+z^4x^4\right)=0\)
???
P.An hở