K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2019

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2018\cdot2019}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(A=1-\frac{1}{2019}=\frac{2018}{2019}\)

Mà \(\frac{2018}{2019}< \frac{2019}{2019}=1\)

\(\Rightarrow A< 1\)

12 tháng 5 2019

#)Giải :

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(A=1-\frac{1}{2019}\)

\(A=\frac{2018}{2019}\)

Vì \(\frac{2018}{2019}< 1\Rightarrow A< 1\)

      #~Will~be~Pens~#

6 tháng 1 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{100.101}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{100}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)\(=\frac{101}{101}-\frac{1}{101}\)

\(=\frac{100}{101}\)

6 tháng 1 2017

thank you

16 tháng 7 2019

(1-1/1.2)+(1-1/2*3)+......+(1-1/2015*2016)

=(0/1*2)+(0+2*3)+..........+(0/2015*2016)

=0

tui nghĩ cái đề phải như thế này  \(\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+\left(1-\frac{1}{3.4}\right)+...+\left(1-\frac{1}{2015.2016}\right)\)

3 tháng 5 2022

\(\text{#}HaimeeOkk\)

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2018.2019}+\dfrac{1}{2019.2020}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2018}-\dfrac{1}{2019}+\dfrac{1}{2019}-\dfrac{1}{2020}\)

\(A=1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{2019}-\dfrac{1}{2019}\right)-\dfrac{1}{2020}\)

\(A=1-0-0-0-...-0-\dfrac{1}{2020}\)

\(A=1-\dfrac{1}{2020}\)

\(A=\dfrac{2019}{2020}\)

Vậy \(A=\dfrac{2019}{2020}\)

14 tháng 4 2018

=\(11\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99\cdot100}\right)\)=\(11\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)=\(11\left(1-\frac{1}{100}\right)\)=11\(\frac{99}{100}\)=\(\frac{1089}{100}\)

14 tháng 4 2018

Đặt \(A=\frac{11}{1.2}+\frac{11}{2.3}+...+\frac{11}{99.100}\)

\(\Rightarrow A=11\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A=11\left(1-\frac{1}{100}\right)\)

\(\Rightarrow A=11.\frac{99}{100}\)

\(\Rightarrow A=\frac{1089}{100}\)

1 tháng 8 2017

1/1.2+1/2.3+1/3.4+......+1/2003.2004=1/1-1/2+1/2-1/3+1/3-1/4+......+1/2003-1/2004

                                                          =1/1-1/2004

                                                          =2003/2004

1 tháng 8 2017

1/1.2+1/2.3+1/3.4+.......1/2003.2004

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)

\(=1-\frac{1}{2004}\)

\(=\frac{2003}{2004}\)

\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+2015}\)

\(=\frac{2}{1.2}+\frac{1}{\frac{\left(1+2\right).2}{2}}+\frac{1}{\frac{\left(1+2+3\right).3}{2}}+.....+\frac{1}{\frac{\left(2015+1\right).2015}{2}}\)

\(=\frac{2}{1.2}+\frac{2}{2.3}+....+\frac{2}{2015.2016}\)

8 tháng 2 2020

dễ vãi cả đạn

9 tháng 6 2017

Đặt A = 1.2+2.3+3.4+....+98+99

ð     3a = 1.2.3-1.2.3+2.3.4+...+98.99.100

ð     3a=98.99.100

ð     A=98.99.100/3

ð     A=323400

9 tháng 6 2017

Đặt A = 1.2 + 2.3 + 3.4 + ...... + 98.99

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ....... + 98.99.100

=> 3A = 98 .99.100

=> A = 98 .99.100/3 

=> A = 323400 

31 tháng 3 2018

Đặt \(A=\frac{7}{1\cdot2}+\frac{7}{2\cdot3}+...+\frac{7}{10\cdot11}\)

\(\Rightarrow\frac{1}{7}A=\frac{1}{7}\left(\frac{7}{1\cdot2}+\frac{7}{2\cdot3}+...+\frac{7}{10\cdot11}\right)\)

\(\Rightarrow\frac{1}{7}A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{10\cdot11}\)

\(\Rightarrow\frac{1}{7}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)

\(\Rightarrow\frac{1}{7}A=1-\frac{1}{11}\)

\(\Rightarrow\frac{1}{7}A=\frac{10}{11}\)

\(\Rightarrow A=\frac{10}{11}:\frac{1}{7}\)

\(\Rightarrow A=\frac{70}{11}\)