K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

Đề đúng!

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2017^2}\)

Ta có: \(\frac{1}{2^2}=\frac{1}{4}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

.................

\(\frac{1}{2017^2}< \frac{1}{2016.2017}\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{2017}=\frac{3}{4}-\frac{1}{2017}< \frac{3}{4}\)

Vậy A < 3/4

2 tháng 5 2017

dề đúng

DD
6 tháng 3 2021

Đặt \(A=2017-\frac{1}{4}-\frac{2}{5}-...-\frac{2017}{2010}\)

\(B=\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\)

Ta có: 

\(A=2017-\frac{1}{4}-\frac{2}{5}-...-\frac{2017}{2020}\)

\(A=1-\frac{1}{4}+1-\frac{2}{5}+1-\frac{3}{6}+...+1-\frac{2017}{2020}\)

\(A=\frac{3}{4}+\frac{3}{5}+\frac{3}{6}+...+\frac{3}{2020}\)

\(A=3\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\)

\(B=\frac{1}{4.5}+\frac{1}{5.5}+\frac{1}{6.5}+...+\frac{1}{2020.5}\)

\(B=\frac{1}{5}\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(\frac{A}{B}=\frac{3\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)}{\frac{1}{5}\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)}=\frac{3}{\frac{1}{5}}=15\)

29 tháng 4 2018

mình đánh thiếu đề bài ở cuối còn có ''So sánh A với \(-\frac{1}{2}\)

13 tháng 8 2018

(: ko bít. tui giỏi tiếng anh nhưng ngu toán lắm

2. So sánh A và B

b) A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{20}\right)\)

    A = \(\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right).....\left(\frac{20}{20}-\frac{1}{20}\right)\)

    A = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{18}{19}.\frac{19}{20}\)

    A = \(\frac{1.2.3.....19}{2.3.4.....20}\)

    A = \(\frac{1}{20}\)

  Mà \(\frac{1}{20}\)>   \(\frac{1}{21}\)

=> A > B

6 tháng 5 2018

Sửa lại câu 1b, \(\frac{1}{2017.2019}\)

17 tháng 6 2019

\(A=-7+\frac{3}{4}-\frac{1}{3}-6+\frac{5}{4}-\frac{4}{3}-3-\frac{7}{4}+\frac{5}{3}\)

\(A=\left(-7-6-3\right)+\left(\frac{3}{4}+\frac{5}{4}-\frac{7}{4}\right)+\left(\frac{5}{3}-\frac{1}{3}-\frac{4}{3}\right)\)

\(A=-16+\frac{1}{4}+0\)

\(A=-15\frac{3}{4}\)

17 tháng 6 2019

\(A=\left(-7+\frac{3}{4}-\frac{1}{3}\right)-\left(6-\frac{5}{4}+\frac{4}{3}\right)-\left(3+\frac{7}{4}-\frac{5}{3}\right)\)

\(=-7+\frac{3}{4}-\frac{1}{3}-6+\frac{5}{4}-\frac{4}{3}-3-\frac{7}{4}+\frac{5}{3}\)

\(=\left(-7-6-3\right)+\left(\frac{3}{4}+\frac{5}{4}-\frac{7}{4}\right)+\left(\frac{-1}{3}-\frac{4}{3}+\frac{5}{3}\right)\)

\(=-16-\frac{1}{4}\)