Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề gì mà dài dữ vậy !? Nhìn đã thấy choáng rồi =_=
Đề 3 bài 5 :
Ta đặt vế trái là A
Vì \(xyz=2006\)
=>A= \(\dfrac{xyzx}{xy+xyzx+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z=1}\)
=> \(\dfrac{zx}{1+zx+x}+\dfrac{1}{z+1+xz}+\dfrac{z}{xz+z+1}=1\)
=> đpcm
Đề 4 bài 5 :
Ta có : \(a+b=c+d\)
\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2=c^2+2cd+d^2\)
\(\Leftrightarrow2ab=2cd\) ( Vì \(a^2+b^2=c^2+d^2\))
\(\Leftrightarrow a^2-2ab+b^2=c^2-2cd+d^2\)
\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)
Xét hai trường hợp :
TH1: \(a-b=c-d\)
Mà ta có : \(a+b=c+d\)
\(\Rightarrow a-b+a+b=c-d+c+d\)
\(\Leftrightarrow2a=2c\)
\(\Leftrightarrow a=c\) \(\Rightarrow b=d\) (*)
TH2: \(a-b=d-c\)
Mà \(a+b=c+d\)
\(\Leftrightarrow a-b+a+b=d-c+d+c\)
\(\Leftrightarrow2a=2d\)
\(\Leftrightarrow a=d\) \(\Rightarrow b=c\) (**)
Thay vào....
Từ (*)và (**) => đpcm
P/s : Làm hộ mấy bài thôi ,dài quá mỏi tay :vv
a) 2x2- 6x = 2x.(x-6)
b) 2x2 - 18 = 2.(x^2 - 9)
=2.(x-3).(x+3)
c) x3 + 3x2 +x +3 =(x^3 + x)+(3x^2 + 3)
= x.(x^2 + 1) + 3.(x^2 + 1)
=(x+3).(x^2 + 1)
d) x2 - y2 + 6y -9=(y^2 -6y+9)-x^2
=(y-3)^2 - x^2
=(y-3-x).(y-3+x)
Bài 1 ,2 dễ chắc bn làm được
Bài 3:
a)Xét tam giác ACF có:
\(\hept{\begin{cases}AO=CO\\AE=EF\end{cases}}\)=> OE là đường trung bình => OE//CF
Xét tam giác EFC có:
\(OE\text{//}CE\Leftrightarrowđpcm\)
b) DE=1/2CF(vì DE là đường trung bình)
CI=1/2CF(vì E là TĐ CF)
=>OE=CI(OE//CI
Nên OEIC là hình bình hành
c) Xét tứ giác HFKC có:
\(\hept{\begin{cases}FH\perp BC\Rightarrow\widehat{FHC}=90^0\\FK\perp CD\Rightarrow\widehat{FKC}=90^0\\HC\perp CD\Rightarrow\widehat{KCH}=90^0\end{cases}}\)
Nên HFKC là hình chữ nhật
Mà I là TĐ của đường chéo CF
=> đpcm
d) Ko hiểu đề
\(x^2-2x+114=x\left(x-2\right)+114va,x\left(x-2\right)\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\Rightarrow Q_{min}=-1+114=113\)
Bài 1 :
\(Q=x^2-2x+114\)
\(Q=x^2-2\cdot x\cdot1+1^2+113\)
\(Q=\left(x-1\right)^2+113\ge113\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Qmin = 113 khi và chỉ khi x = 1
Bài 2:
a) \(x^2+4x-5x-20\)
\(=x\left(x+4\right)-5\left(x+4\right)\)
\(=\left(x+4\right)\left(x-5\right)\)
b) \(x^3+2x^2-9x-18\)
\(=x^2\left(x+2\right)-9\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-9\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x+3\right)\)
Bài 1:
a) 2x(x2 - 3x + 4)
= 2x3 - 6x2 + 8x
b) (x + 2)(x - 1)
= x2 - x + 2x - 2
= x2 + x - 2
c) (4x4 - 2x3 + 6x2) : 2x
= 2x3 - x2 + 3x
Bài 2:
a) 2x2 - 6x
= 2x(x - 3)
b) 2x2 - 18
= 2(x2 - 9)
= 2(x - 3)(x + 3)
c) x3 + 3x2 + x + 3
= x2(x + 3) + (x + 3)
= (x + 3)(x2 + 1)
Bài 1 :
a) \(2x\left(x^2-3x+4\right)\)
= \(2x^3-6x^2+8x\)
b) \(\left(x+2\right)\left(x-1\right)\)
\(=x^2-x+2x-2\)
\(=x^2-x-2\)
Bài 2 :
a) \(2x^2-6x\)
\(=2x\left(x-3\right)\)
b) \(2x^2-18\)
\(=2\left(x^2-9\right)\)
\(=2\left(x-3\right)\left(x+3\right)\)
c) \(x^3+3x^2+x+3\)
\(=\left(x^3+3x^2\right)\left(x+3\right)\)
\(=x^2\left(x+3\right)\left(x+3\right)\)
\(=\left(x^2+1\right)\left(x+3\right)\)
Bài 3 :
a) \(\dfrac{5x}{x-1}+\dfrac{-5}{x-1}=\dfrac{5x+\left(-5\right)}{x-1}=\dfrac{5\left(x-1\right)}{x-1}=5\)
b) \(\dfrac{1}{x-3}+\dfrac{2}{x+3}+\dfrac{9-x}{x^2-9}\)
\(=\dfrac{1}{x-3}+\dfrac{2}{x+3}+\dfrac{9-x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}+\dfrac{9-x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x+3+2x-6+9-x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\)