Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy x=0 không là nghiệm của pt
Chia cả 2 vế cho \(x^2\ne0\) ta được:
\(x^4+\text{ax}^3+bx^2+cx+1=0\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}+\text{ax}+b+\dfrac{c}{x}=0\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}=-\text{ax}-b-\dfrac{c}{x}\)
\(\Rightarrow\left(x^2+\dfrac{1}{x^2}\right)^2=\left(\text{ax}+\dfrac{c}{x}+b\right)^2\le\left(a^2+b^2+c^2\right)\left(x^2+\dfrac{1}{x^2}+1\right)\)
( theo BĐT Bunhiacopxki)
\(\Rightarrow\left(a^2+b^2+c^2\right)\ge\dfrac{\left(x^2+\dfrac{1}{x^2}\right)^2}{x^2+\dfrac{1}{x^2}+1}\ge\dfrac{4}{3}\)( theo bánh Cosi)
Dấu '=' xảy ra khi \(x^2=\dfrac{1}{x^2}\Leftrightarrow x=\pm1\)
==> Chọn A
a, x+7=-12
\(\Leftrightarrow\) x= -19
b, x-15=-21
\(\Leftrightarrow\) x= -6
c, 13-x=20
\(\Leftrightarrow\) x=-7
\(\left|x-12\right|=2014\\ \Rightarrow\left[{}\begin{matrix}x-12=2014\\x-12=-2014\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2014+12\\x=-2014+12\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2026\\x=-2002\end{matrix}\right.\)
Vậy \(x\in\left\{2014;-2002\right\}\)
\(\left|x-12\right|=2014\\ \Rightarrow\left\{{}\begin{matrix}x-12=2014\\x-12=-2014\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2026\\x=-2002\end{matrix}\right.\)
Vậy...
\(\sqrt{\left(x-2\right)^2}=x-2\)
trên máy thì có nút đó ấn vô
4.
ĐK: \(x\ge0\)
Ta có \(1-\sqrt{2\left(x^2-x+1\right)}\le1-\sqrt{2}< 0\), khi đó:
\(\dfrac{x-\sqrt{x}}{1-\sqrt{2\left(x^2-x+1\right)}}\ge1\)
\(\Leftrightarrow x-\sqrt{x}\le1-\sqrt{2\left(x^2-x+1\right)}\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(x+\dfrac{1}{x}-1\right)}\le0\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2}\le0\)
\(\Leftrightarrow t-1+\sqrt{2t^2+2}\le0\left(t=\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
\(\Leftrightarrow\sqrt{2t^2+2}\le1-t\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-t>0\\2t^2+2\le t^2-2t+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t< 1\\\left(t+1\right)^2\le0\end{matrix}\right.\)
\(\Leftrightarrow t=-1\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}+1=0\)
\(\Leftrightarrow x+\sqrt{x}-1=0\)
\(\Leftrightarrow x=\dfrac{3-\sqrt{5}}{2}\)
\(a+b+c=0\Rightarrow-a=b+c\Rightarrow a^2=b^2+c^2+2bc\Rightarrow b^2+c^2=a^2-2bc\)
Tương tự như vậy ta được: \(a^2+c^2=b^2-2ac;a^2+b^2=c^2-2ab\)
Suy ra: \(B=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-b^2-a^2}\)
\(=\frac{a^2}{a^2-\left(a^2-2bc\right)}+\frac{b^2}{b^2-\left(b^2-2ac\right)}+\frac{c^2}{c^2-\left(c^2-2ab\right)}\)
\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}=\frac{\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)}{2abc}\)
Ta lại thấy a+b=-c;b+c=-a;c+a=-b (a+b+c=0)
Vậy \(B=\frac{0^3-3.\left(-c\right)\left(-a\right)\left(-b\right)}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)