Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có sơ đồ sau:
Nhìn vào sơ đồ ta có như sau:
Khi người đi xe đạp chở người đi bộ 2 đến D thì thả người đi bộ 2 ở đó.
Trong khi đó người đi bộ 1 đã đến 1 điểm E nào đó nằm trong khoảng AC.
Khi người đi xe đạp quay lại để đón người đi bộ 1, thì 2 người gặp nhau ở C.
Khi người đi xa đạp và người đi bộ 1 gặp nhau ở C thì người đi bộ 2 từ D đã đi đến 1 điểm F nào đó trong khoảng DB.
Sau đó người đi xe đạp đèo người đi bộ 1 từ C về B thì cùng lúc đó gặp người đi bộ 2 ở B.
Ta có:
Thời gian người đi xe đạp đi từ A -> D -> C là :
Thời gian người đi bộ 1 đi từ A -> C là:
Mà thời gian người đi xe đạp đi từ A -> C -> D bằng thời gian người đi bộ đi từ A -> C [ do xuất phát cùng 1 thời điểm, từ A, và gặp nhau tại C ].
(1)
Ta lại có: Thời gian người đi xe đạp từ D -> C -> B bằng thời gian người đi bộ 2 đi từ D -> B [ do cùng xuất phát 1 thời điểm, cùng đi từ D, và cùng gặp tại B ]
(2)
Từ (1) và (2) ta có:
Mà (km)
km
Ta tính tổng thời gian = thời gian người đi xe đạp đi đến D + thời gian người đi bộ 2 đi về B.
( tự tính nhé, đến đoạn này nhác quá )
Bài 2:
phương trình chuyển động (coi mốc thời gian bằng là thời điểm xe 1 xuất phát.......)
xe 1 : S1 = 8t
xe 2 : S2 = 12 (t-1/4 ) vì xe 2 đi sau xe1 15' bằng 1/4 giờ.
xe 3 : S3 = v3 (t-3/4 ) vì xe 3 đi sau xe2 30',tức sau xe1 45' bằng 3/4 giờ.
Tại thời điểm xe 1 gặp xe 3 : S1=S3 <=> v3(t-3/4) = 8t <=> v3 = 8t/(t-3/4 ) (1)
Sau 30' thì cách đều,tức t' = t +0.5. ta có : S3=( S1 + S2 )/2
<=> v3( t+0.5-3/4) = < 8(t+0.5)+12(t+0.5-1/4) >/2 (2)
từ (1) và (2) thì ta được t =7/4, thay vào 1 ta được v3= 14 km/h
Gọi t là thời gian đi của 3 xe
Goi D , C lần lượt là nơi người 1 để người 2 đi bộ và là nơi người 1 và 3 gặp nhau
Vì xe 2 và 3 đều đi bộ và cung đi trong thời gian t nên AC = BD
=> CD = AB - (AC+BD)=AB - 2 BD
Thời gian xe 2 đi là :
\(t=\dfrac{AD}{v_2}+\dfrac{BD}{v_1}=\dfrac{20-BD}{v_2}+\dfrac{BD}{v_1}\) (1)
Thời gian xe 1 đi là :
\(t=\dfrac{AD+BD+2CD}{v_2}\)\(=\dfrac{AD+BD+2CD}{v_2}=\dfrac{AB+2CD}{v_2}=\dfrac{AB+2\left(AB-2BD\right)}{v_2}=\dfrac{3AB-4BD}{v_2}\)
(2)
Từ (1) vả (2) , ta có:
\(\dfrac{20-BD}{v_2}+\dfrac{BD}{v_1}=\dfrac{3AB-4BD}{v_2}\)
\(< =>\dfrac{20-BD}{20}+\dfrac{BD}{4}=\dfrac{3.20-4BD}{20}\)
Giải pt , tá dược :BD= 5
Thay BD = 5 vao (1) , ta duoc : t = 2(h)
Vậy thời gian .......................
S=20=V1.T1+V2 (t-t1)=4t1+20.(t-t1) (1)
ABCD
Gọi C là vị trí người thứ hai xuống xe để đi bộ, D là vị trí người thứ ba lên xe để đi tiếp đến B
Tổng quãng đường người này đi được là :
20t=AC+CD+DB
Mà DB=AC=AB-CB=S-V1.V1
AD=CB=V1.T1
Nên CD=AB-AD-CB=S-2v1.t1
Vậy 20t+2. (S-2v1t1)+S-2v1t1=3s-4v1t1=60-16V1. (2)
Từ 1 và 2 ta đc : t=2h
Bài 1: Tóm tắt
\(S_1=24km\)
\(V_1=12km\)/\(h\)
\(S_2=12km\)
\(V_2=45'=0,75h\)
_______________
a) \(t_1=?\)
b) \(V_{TB}\)
Giải
a) Thời gian người đó đạp xe trên quãng đường đầu là: \(t_1=\frac{S_1}{V_1}=\frac{24}{12}=2\left(h\right)\)
b) Ta có công thức tính vận tốc trung bình là: \(V=\frac{S_1+S_2+....+S_n}{t_1+t_2+t_3+....+t_n}\)
Vậy vận tốc trung bình của người đó trên quãng đường là:
\(V_{TB}=\frac{S_1+S_2}{t_1+t_2}=\frac{24+12}{2+0,75}\approx13\)(km/h)
Bài 2: Tóm tắt
\(S_1=600m=0,6km\)
\(t_1=2'=\frac{1}{30}\left(h\right)\)
\(S_2=10,8km\)
\(t_2=0,75h\)
_________________
a) \(V_1=?;V_2=?\)
b) \(S_{KC}=?\)
Giải
a) Vận tốc của người thứ nhất là: \(V_1=\frac{S_1}{t_1}=\frac{0,6}{\frac{1}{30}}=18\)(km/h)
Vận tốc của người thứ 2 là: \(V_2=\frac{S_2}{t_2}=\frac{10,8}{0,75}=14,4\) (km/h)
=> Người thứ nhất đi nhanh hơn người thứ 2.
b) Do đi cùng lúc => thời gian đi của 2 người là như nhau và vận tốc đã cho
=> Hai người cách nhau số km là: \(S-t\left(V_1+V_2\right)=S-\frac{1}{3}\left(18+14,4\right)=S-10,8\)
Theo đề thì còn cần phải dựa vào khoảng cách của 2 người khi 2 người bắt đầu đi nữa.
a) Thời gian người đó đạp xe trên quãng đường thứ nhất là :
24 : 12 = 2 (giờ)
b) Đổi : 45 phút = 0,75 giờ
=> Vận tốc trung bình của người đi xe đạp trên cả quãng đường là :
(S1 + S2) / (t1 + t2) = (12+24) / (2+0,75) = 13 (km/h)
gọi thời gian đi tới khi gặp xe một của xe ba là t3
thời gian đi tới khi gặp xe hai của xe ba là t3'
30'=0,5h
ta có:
lúc xe ba gặp xe một thì:
\(S_1=S_3\)
\(\Leftrightarrow v_1t_1=v_3t_3\)
do xe ba đi sau xe một 30' nên:
\(v_1\left(t_3+0,5\right)=v_3t_3\)
\(\Leftrightarrow10\left(t_3+0,5\right)=v_3t_3\)
\(\Leftrightarrow10t_3+5=v_3t_3\)
\(\Leftrightarrow v_3t_3-10t_3=5\)
\(\Rightarrow t_3=\frac{5}{v_3-10}\left(1\right)\)
ta lại có:
lúc xe ba gặp xe hai thì:
\(S_3=S_2\)
\(\Leftrightarrow v_3t_3'=v_2t_2\)
do xe hai đi trước xe ba 30' nên:
\(v_3t_3'=v_2\left(t_3'+0,5\right)\)
\(\Leftrightarrow v_3t_3'=12\left(t_3'+0,5\right)\)
tương tự ta có:
\(t_3'=\frac{6}{v_3-12}\left(2\right)\)
do thời gian gặp cả hai lần cách nhau một giờ nên:
t3'-t3=1
\(\Leftrightarrow\frac{6}{v_3-12}-\frac{5}{v_3-10}=1\)
\(\Leftrightarrow\frac{6\left(v_3-10\right)-5\left(v_3-12\right)}{\left(v_3-12\right)\left(v_3-10\right)}=1\)
\(\Leftrightarrow6v_3-60-5v_3+60=\left(v_3-12\right)\left(v_3-10\right)\)
\(\Leftrightarrow v_3=v_3^2-10v_3-12v_3+120\)
\(\Leftrightarrow v_3^2-23v_3+120=0\)
giải phương trình bậc hai ở trên ta được:
v3=15km/h
v3=8km/h(loại)
bn xem lại chỗ: k/c giữa 2 lần gặp của ng3 voi 2 ng đi trc là 1h?
(k thể như z dc vì v1 khác v2 nên k thể găp 2 ng cùng lúc 1h)
Lưu ý đề :ba người chỉ có 1 chiếc xe đạp....