Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AH^2=AC^2-HC^2=20^2-16^2=144\)
hay AH=12(cm)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15(cm)
Vậy: AB=15cm; AH=12cm
a: ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
=>HB=HC
b: HB=HC=6/2=3cm
=>AH=căn 5^2-3^2=4cm
c: G là trọng tâm của ΔABC
=>AG là trung tuyến ứng với cạnh BC trongΔABC
=>A,G,H thẳng hàng
a)xét tam giác vuông ABH và tam giác vuông ACH có
cạnh AB chung
AB=AC
do đó tam giác vuông ABH = tam giác vuông ACH (cạnh huyền - cạnh góc vuông)
=>HB=HC
b) ta có
HC=HB
mà BC= 8
=> HC=4
áp dụng định lí Py-ta-go vào tam giác vuông AHC có
AC2 . HC2 =AH2
hay AH2 = 52 . 42=400
=>AH=20
Ta có: AC = AH + HC = 7 + 2 = 9 (cm)
Vì AB = AC => AB = 9 cm
Áp dụng định lí Pi - ta - go vào t/giác AHB vuông tại H, ta có:
AB2 = AH2 + BH2
=> BH2 = AB2 - AH2 = 92 - 72 = 32
Áp dụng định lí Pi - ta - go vào t/giác AHC vuông tại H, ta có:
BC2 = BH2 + HC2 = 32 + 22 = 36
=> BC = 6 (cm)
a: Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên H là trung điểm của BC
hay BH=CH
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
c: Xét ΔABC có
AD/AB=AE/AC
Do đó: DE//BC
vì BH=9 , HC=16
=> BC=25
xét tam giác ABC ...., ta có
BC^2=CA^2+AB^2
hay 25^2=20^2 +Ab^2
625=400 + AB^2
AB^2=225
AB=15
xét tam giác ABH...., ta có
AB^2=AH^2 + BH^2
hay 15^2= Ah^2 + 9^2
225= AH^2 +81
AH^2= 144
AH=12
thêm kl và những chỗ còn thiếu vào nhé
a: AB=AH+HC=5cm
=>BH=4cm
\(BC=\sqrt{4^2+2^2}=2\sqrt{5}\left(cm\right)\)
b: AB=AH+HC=3cm
\(BH=\sqrt{3^2-2^2}=\sqrt{5}\left(cm\right)\)
\(BC=\sqrt{5+1}=\sqrt{6}\left(cm\right)\)
c: AB=AH+HC=8,5cm
\(BH=\sqrt{8.5^2-7.5^2}=4\left(cm\right)\)
\(BC=\sqrt{4^2+1^2}=\sqrt{17}\left(cm\right)\)