K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
4 tháng 9 2021

Đa thức là các tổng ( hiệu ) của các đơn thức 

lý dó \(\left(x+1\right)\left(x+3\right)\) là đa thức vì nó bằng \(x^2+4x+3\) là tổng của 3 đơn thức

4 tháng 9 2021

-Đa thức  một đơn thức hoặc một tổng của hai hay nhiều đơn thức
-Vì (x+1) (x+3)  có 1 tổng của 2 đơn thức  
Mik cx ko chắc lám đâu nha nếu sai bn thông cảm nha 

9 tháng 5 2019

a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)

\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)

b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)

                                \(=6x^3-x^2-5\)

c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :

       \(6.1^3-1^2-5=0\)

Vậy x=1 là nghiệm của đa thức f(x) + g(x)

+) Thay x=-1 vào đa thức f(x) + g(x) ta được :

    \(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)

Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)

19 tháng 4 2017

a) Ta có: P(x) = 0 khi 3 – 2x = 0

=>-2x = -3 => x = \(\dfrac{3}{2}\)

b) Q(x) =x2 +2 là đa thức không có nghiệm vì

x2 ≥ 0

2 > 0 (theo quy tắc nhân hai số hữu tỉ cùng dấu)

=>x2 + 2 > 0 với mọi x

Nên Q(x) không có nghiệm trong R


19 tháng 4 2017

a) Ta có P(x) = 0 khi 3 – 2x = 0

Giải bài 13 trang 90 SGK Toán 7 Tập 2 | Giải toán lớp 7

b) Đa thức Q(x) không có nghiệm, bởi vì:

x2 ≥ 0 với mọi x thuộc R.

2 > 0

\(\Rightarrow\) Q(x) = x2 + 2 > 0 với mọi x thuộc R.

Do đó, không có giá trị x nào thuộc R để Q(x) = 0 hay đa thức Q(x) không có nghiệm.

6 tháng 4 2017

\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)

=> x = 1 và x = 3 là nghiệm của đa thức f(x)

Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)

=> nghiệm của đa thức g(x) là x = { 1; 3 }

Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)

\(\Rightarrow-a+b=2\)(1)

Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)

\(\Rightarrow3a-b=8\)(2)

Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10

=> 2a = 10 => a = 5

=> - 5 + b = 2 => b = 7

Vậy a = 5 ; b = 7

6 tháng 4 2017

(x-1)(x-3)=0

=>x-1=0 hoặc x-3=0

=>x=1 hoặc x=3

Vậy nghiệm của f(x) là 1 và 3

Nghiệm của g(x) cũng là 1 và 3

Với x=1 ta có g(x)=1+a+b-3=0

=>a+b-2=0

a+b=2

Với x=3 ta có g(x)=27-9a+3b-3=0

=>24-9a+3b=0

=>8-3a+b=0

=>3a-b=8

a=\(\frac{8+b}{3}\)

Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)

11 tháng 5 2017

\(a=\frac{6.2.3.4+6.3.4.5+6.4.5.6+...+6.98.99.100}{2.3.4+3.4.5+4.5.6+...+98.99.100}=6\)

thay vào p(x) suy ra a không là nghiệm của đa thức nhé bạn

11 tháng 5 2017

a = 6.2.3.4+6.3.4.5+6.4.5.6 +...+6.98.99.100 / 2.3.4+3.4.5+4.5.6+...+98.99.100

  = 6 > 0

Ta thay vào P(x) 

Suy ra a ko là nghiệm của đa thức

29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha

 Vì \(P\left(x\right)=Q\left(x\right)+Q\left(1-x\right)\)

+)\(x=0\) \(\implies\) \(P\left(0\right)=Q\left(0\right)+Q\left(1\right)=0\) 

+)\(x=1\) \(\implies\)  \(P\left(1\right)=Q\left(1\right)+Q\left(0\right)\)

 \(\implies\)  \(P\left(0\right)=P\left(1\right)=0\)

Đặt đa thức : P(x) = an  . \(x^n\)  + an - 1 \(x^{n-1}\)  + ...... + a1 . \(x^1\) + a0

P(x) là đa thức bậc n ; có các hệ số là : an  ; an - 1; .... ; a; a

P(1) = an +  an - 1  +  ......... + a+ a0  = 0 

Mà a0 ; a1  ; ..... ; an - 1 ; an  \(\geq\) 0

 \(\implies\)  a+ an - 1 + ... + a1 + a0  \(\geq\) 0 

 \(\implies\) P(x)  \(\geq\) 0

Dấu " = " xảy ra \(\iff\) a0 = a1  = ..... = an - 1 = an =  0

\(\implies\)  P(x) = 0 với mọi x \(\in\) R

\(\implies\) P(7) = 0 

\(\implies\) P(P(7)) = P(0) = 0

Vậy P(P(7)) = 0