K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Có thể đặt tương ứng cho mỗi khối đa diện H một số dương VH thỏa mãn các tính chất sau:a) Nếu H là khối lập phương có cạnh bằng một thì VH =1.b) Nếu hai khối đa diện H1 và H2  bằng nhau thì V1 = V2.c) Nếu khối đa diện H được phân chia thành hai khối đa diện: H1 và H2 thì VH = VH1 +  VH2 Số dương VH nói trên được gọi là thể tích của khối đa diện H.Khối lập phương có cạnh bằng một...
Đọc tiếp

1. Có thể đặt tương ứng cho mỗi khối đa diện H một số dương VH thỏa mãn các tính chất sau:

a) Nếu H là khối lập phương có cạnh bằng một thì VH =1.

b) Nếu hai khối đa diện H1 và H2  bằng nhau thì V1 = V2.

c) Nếu khối đa diện H được phân chia thành hai khối đa diện: H1 và H2 thì VH = VH1 +  VH2 Số dương VH nói trên được gọi là thể tích của khối đa diện H.
Khối lập phương có cạnh bằng một được gọi là khối lập phương đơn vị.
Nếu H là khối lăng trụ ABC.A’B’C’ chẳng hạn thì thể tích của nó còn được kí hiệu là VABC.A’B’C’

2. Thể tích của khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h là

V = B.h

Đặc biệt thể tích của khối hộp chữ nhật bằng tích của ba kích thước của nó.

3. Thể tích của khối chóp có diện tích đáy bằng B và chiều cao bằng h là V= 11/3Bh

Kiến thức bổ sung : 

4. Cho hình chóp S.ABC. Trên ba tia SA, SB, SC lần lượt lấy ba điểm A’, B’, C’.

Khi đó 

5. Nếu H’ là ảnh của H qua một phép dời hình thì 

Nếu H’ là ảnh của H qua một phép vị tự tỉ số k thì 

6. Bảng tóm tắt của năm loại khối đa diện đều :

LoạiTên gọiSố đỉnhSố cạnhSố mặt
{3;3}Tứ diện đều464
{4;3}Lập phương8126
{3;4}Bát diện đều6128
{5;3}Mười hai mặt đều203012
{3;5}Hai mươi mặt đều123020

Ở đây diện tich toàn phần và thể tích được tính theo cạnh a của đa diện đều.

Xem lại:Bài tập khối đa diện lồi và khối đa diện đều trang 18

B.Giải bài tập sách giáo khoa hình 12 trang 25, 26

Bài 1. (Trang 25 SGK Hình 12 chương 1)

Tính thể tích khối tứ diện đều cạnh a.

0
15 tháng 8 2017

Vì ∆ ABC đồng dạng với ∆ AMN nên:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Diện tích hình chữ nhật MNPQ là:

SMNPQ = MN. NP = MN.KH = MN.( AH – AK)

=> SMNPQ = 16k.( 12- 12k)

Theo đề bài diện tích hình chữ nhật đó là 36cm2 nên

16k.( 12- 12k ) = 36

⇔ 16k.12( 1- k) = 36

⇔ 16k(1 – k) = 3 ( chia cả hai vế cho 12)

⇔ 16k – 16k2 = 3

⇔ 16k2- 16k + 3= 0

Ta có: ∆’= (-8)2 – 16.3 = 16> 0

Phương trình trên có 2 nghiệm là:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy để diện tích hình chữ nhật MNPQ là 36cm2 thì vị trí điểm M phải thỏa mãn:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

22 tháng 10 2019

Vì ∆ ABC đồng dạng với ∆ AMN nên:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Diện tích hình chữ nhật MNPQ là:

SMNPQ = MN. NP = MN.KH = MN.( AH – AK)

=> SMNPQ = 16k.( 12- 12k)

Theo đề bài diện tích hình chữ nhật đó là 36cm2 nên

16k.( 12- 12k ) = 36

⇔ 16k.12( 1- k) = 36

⇔ 16k(1 – k) = 3 ( chia cả hai vế cho 12)

⇔ 16k – 16k2 = 3

⇔ 16k2- 16k + 3= 0

Ta có: ∆’= (-8)2 – 16.3 = 16> 0

Phương trình trên có 2 nghiệm là:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy để diện tích hình chữ nhật MNPQ là 36cm2 thì vị trí điểm M phải thỏa mãn:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9