Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\dfrac{a^3}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}=\dfrac{2a-b}{2}\)(áp dụng cosi cho \(a^2+b^2\ge2ab\))
\(\dfrac{b^3}{b^2+1}=b-\dfrac{b}{b^2+1}\ge b-\dfrac{b}{2b}=b-\dfrac{1}{2}=\dfrac{2b-1}{2}\)(áp dụng cosi cho\(b^2+1\ge2b\))
\(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}=\dfrac{2-a}{2}\)( áp dụng cosi cho \(a^2+1\ge2a\))
Cộng vế theo vế
\(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+1}+\dfrac{1}{a^2+1}\ge\dfrac{2a-b+2b-1+2-a}{2}\)\(\ge\dfrac{a+b+1}{2}\left(đpcm\right)\)
Dấu "=" xảy ra <=> a=b=1
\(\left\{{}\begin{matrix}x-y=1\left(1\right)\\\left(m+1\right)x+my=m+2\left(2\right)\end{matrix}\right.\) từ (1) ta được: \(y=x-1\) Thay vào (2) ta được: \(\left(m+1\right)x+m\left(x-1\right)=m+2\Leftrightarrow mx+x+mx-m=m+2\Leftrightarrow2mx+x=2m+2\Leftrightarrow\left(2m+1\right)x=2m+2\) ,để hpt có nghiệm duy nhất thì \(2m+1\ne0\Leftrightarrow m\ne-\frac{1}{2}\). Hệ pt có nghiệm duy nhất khi \(m\ne-\frac{1}{2}\) là:\(\left\{{}\begin{matrix}x=\frac{2m+2}{2m+1}\\y=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1+\frac{1}{2m+1}\\y=\frac{1}{2m+1}\end{matrix}\right.\) . Để \(x^2+y^2\) nhỏ nhất \(\Leftrightarrow\left(1+\frac{1}{2m+1}\right)^2+\left(\frac{1}{2m+1}\right)^2\) nhỏ nhất
\(\Rightarrow\) tìm gtnn của \(\left(1+\frac{1}{2m+1}\right)^2+\left(\frac{1}{2m+1}\right)^2\)\(\left(1+\frac{1}{2m+1}\right)^2+\left(\frac{1}{2m+1}\right)^2=1+\frac{2}{2m+1}+\left(\frac{1}{2m+1}\right)^2+\left(\frac{1}{2m+1}\right)^2=1+\frac{2}{2m+1}+2\left(\frac{1}{2m+1}\right)^2=2\left[\left(\frac{1}{2m+1}\right)^2+\frac{1}{2m+1}+\frac{1}{4}\right]+\frac{1}{2}=2\left(\frac{1}{2m+1}+\frac{1}{2}\right)^2+\frac{1}{2}\) \(\Rightarrow\left(1+\frac{1}{2m+1}\right)^2+\left(\frac{1}{2m+1}\right)^2\) nhỏ nhất bằng 1/2. Dấu "\(=\)" xảy ra khi \(\frac{1}{2m+1}=-\frac{1}{2}\Leftrightarrow2m+1=-2\Leftrightarrow m=-\frac{3}{2}\left(tman\right)\). Vậy m\(=-\frac{3}{2}\)
sai bạn sửa lại nhé
sửa lại nhé
\(\left\{{}\begin{matrix}3\left(x-y\right)-y=11\\x-2\left(x+5y\right)=-15\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}3x-3y-y=11\\x-2x-10y=-15\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}3x-4y=11\\-x-10y=-15\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x=5\\y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-3y-y=11\\x-2x-10y=-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-4y=11\\-x-10y=-15\left(1\right)\end{matrix}\right.\)
Nhân \(-3\) vào \(\left(1\right)\)
\(\left\{{}\begin{matrix}3x-4y=11\left(2\right)\\3x+30y=45\left(3\right)\end{matrix}\right.\)
Lấy \(\left(2\right)-\left(3\right)\) :
\(\Leftrightarrow3x-3x-4y-30y=11-45\)
\(\Leftrightarrow-34y=-34\)
\(\Leftrightarrow x=1\)
Lấy \(x=1\) thay vào \(\left(2\right)\) : \(3.1-4y=11\Leftrightarrow y=2\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(1;2\right)\)
a) A = \(13-2\sqrt{42}=\left(\sqrt{7}-\sqrt{6}\right)^2\)
<=> \(\sqrt{A}=\sqrt{7}-\sqrt{6}\)
b) \(A=46+6\sqrt{5}=\left(\sqrt{45}+1\right)^2\)
<=> \(\sqrt{A}=\sqrt{45}+1\)
c) \(A=12-3\sqrt{15}=\dfrac{1}{2}\left(24-6\sqrt{15}\right)=\dfrac{1}{2}\left(\sqrt{15}-3\right)^2\)
<=> \(\sqrt{A}=\dfrac{1}{\sqrt{2}}\left(\sqrt{15}-3\right)\)
c: Xét ΔHDK vuông tại H và ΔHIB vuông tại H có
góc HDK=góc HIB
=>ΔHDK đồng dạng với ΔHIB
=>HD/HI=HK/HB
=>HD*HB=HI*HK=AH^2