Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(a=\dfrac{1}{2}\) vào M, ta được:
\(M=\dfrac{cos\dfrac{1}{2}-sin\dfrac{1}{2}}{cos\dfrac{1}{2}+sin\dfrac{1}{2}}\approx0,98\)
\(\tan a=\dfrac{1}{2}\) bạn ơi chứ ko phải a
bài 1
a) \(M=\sin^242^o+\sin^243^o+\sin^244^o+\sin^245^o+\sin^246^o+\sin^247^o+\sin^248^o\)
\(M=\cos^248^o+\cos^247^o+\cos^246^o+\sin^245^o+\sin^246^o+\sin^247^o+\sin^248^o\)
\(M=\left(\sin^248^o+\cos^248^o\right)+\left(\sin^247^o+\cos^247^o\right)+\left(\sin^246^o+\cos^246^o\right)+\sin^245^o\)
\(M=1+1+1+0,5\)
\(M=3,5\)
bài 1
b) \(N=\cos^215^o-\cos^225^o+\cos^235^o-\cos^245^o+\cos^255^o-\cos^265^o+\cos^275^o\)
\(N=\sin^275^o-\sin^265^o+\sin^255^o-\cos^245^o+\cos^255^o-\cos^265^o+\cos^275^o\)
\(N=\left(\sin^275^o+\cos^275^o\right)-\left(\sin^265^o+\cos^265^o\right)+\left(\sin^255^o+\cos^255^o\right)-\cos^245^o\)
\(N=1-1+1-0,5\)
\(N=0,5\)
Tự chứng minh từng cái này rồi suy ra cái đó nhé b.
Ta có: \(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}-sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}\)
Tương tự ta suy ra:
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}sin\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+3sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\left(1\right)\)
Tiếp theo chứng minh:
\(2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=\frac{cosA+cosB+cosC-1}{2}\left(2\right)\)
\(sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}\left(3\right)\)
\(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\left(4\right)\)
Từ (1), (2), (3), (4) suy được điều phải chứng minh
Lời giải:
a) Áp dụng công thức \(\sin ^2a+\cos ^2a=1\) thì:
\(P=3\sin ^2a+4\cos ^2a=3(\sin ^2a+\cos ^2a)+\cos ^2a\)
\(=3.1+(\frac{1}{3})^2=\frac{28}{9}\)
b)
\(\tan a=\frac{3}{4}\Rightarrow \cot a=\frac{1}{\tan a}=\frac{4}{3}\)
\(\frac{3}{4}=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\frac{3}{4}\cos a\)
\(\Rightarrow \sin ^2a=\frac{9}{16}\cos ^2a\)
\(\Rightarrow \sin ^2a+\cos ^2a=\frac{25}{16}\cos ^2a\Rightarrow \frac{25}{16}\cos ^2a=1\)
\(\Rightarrow \cos ^2a=\frac{16}{25}\Rightarrow \cos a=\pm \frac{4}{5}\)
Nếu \(\Rightarrow \sin a=\pm \frac{3}{5}\) (theo thứ tự)
c)
\(\frac{1}{2}=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\frac{\cos a}{2}\). Vì a góc nhọn nên \(\cos a\neq 0\)
Do đó:
\(\frac{\cos a-\sin a}{\cos a+\sin a}=\frac{\cos a-\frac{\cos a}{2}}{\cos a+\frac{\cos a}{2}}=\frac{\cos a(1-\frac{1}{2})}{\cos a(1+\frac{1}{2})}=\frac{1-\frac{1}{2}}{1+\frac{1}{2}}=\frac{1}{3}\)