Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
= \(\frac{z-x}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\frac{x-y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\frac{y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
= \(\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)
b ) \(\frac{4}{\left(y-x\right)\left(z-x\right)}+\frac{3}{\left(y-x\right)\left(y-z\right)}+\frac{3}{\left(y-z\right)\left(x-z\right)}\)
= \(\frac{-4}{\left(y-x\right)\left(x-z\right)}+\frac{3}{\left(y-x\right)\left(y-z\right)}+\frac{3}{\left(y-z\right)\left(x-z\right)}\)
= \(\frac{-4\left(y-z\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}+\frac{3\left(x-z\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}+\frac{3\left(y-x\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}\)
= \(\frac{-4y+4z+3x-3z+3y-3x}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}=\frac{z-y}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}\)
= \(\frac{-\left(y-x\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}=\frac{-1}{\left(x-z\right)\left(y-z\right)}=\frac{1}{\left(x-z\right)\left(x-y\right)}\)
Chúc bạn học tốt !!!
\(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=0\)
d) \(\left(a^2+a\right)^2+4\left(a^2+a\right)-12=\left(a^2+a\right)^2+4\left(a^2+a\right)+16-4\)
\(=\left(a^2+a+2\right)^2-4=\left(a^2+a+2-4\right)\left(a^2+a+2+4\right)\)
\(=\left(a^2+a-2\right)\left(a^2+a+6\right)=\left(a-1\right)\left(a+2\right)\left(a^2+a+6\right)\)