Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Giả sử các số nguyên tố đều lớn hơn 2 ta có
=> pi = 4n + 1 hoạc pi = 4n + 3
=> pi^2 chia 4 dư 1 hay pi^2 = 1 (mod4)
=> p1^2 + p2^2 + ... + p7^2 = 7 (mod4)
mà 7 = 3(mod4) mặt khác p8^2 = 1 (mod 4)
=> pt VN vậy phải có 1 pi nào đó = 2 giả sử là p1
do 2^2 = 4 là số chẵn và p2^2 + ... + p7^2 là tổng bình phương
của 6 số lẽ nên có tổng phải là số chẵn
=> 2^2 + p2^2 + ... + p7^2 là số chẵn => p8 = 2
=> p2^2 + ... + p7^2 = 0 hay p2 = p3 = .. = p7 = 0
* Vậy pt VN
P/s: Anh/chị tham khảo ở đây nha
Nếu nó là mũ chẵn thì chắc chắn đó là số chính phương
Còn nếu là mũ lẻ thì chưa chắc
Nếu nó là mũ chẵn thì chắc chắn đó là số chính phương
Còn nếu là mũ lẻ thì chưa chắc
ko vì
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)