Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sai đề : phải là: a1.a14+a14.a12<a1.a12 nếu thế thì giải như sau
Ta có : a1 + (a2 + a3 + a4) + … + (a11 + a12 + a13) + a14 + (a15 + a16 + a17) + (a18 + a19 + a20) < 0 ; a1 > 0 ; a2 + a3 + a4 > 0 ; … ; a11 + a12 + a13 > 0 ; a15 + a16 + a17 > 0 ; a18 + a19 + a20 > 0 => a20 < 0.
Cũng như vậy : (a1 + a2 + a3) + … + (a10 + a11 + a12) + (a13 + a14) + (a15 + a16 + a17) + (a18 + a19 + a20) < 0 => a13 + a14 < 0.
Mặt khác, a12 + a13 + a14 > 0 => a12 > 0.
Từ các điều kiện a1 > 0 ; a12 > 0 ; a14 < 0 => a1.a14 + a14a12 < a1.a12 [dpcm]
gọi một số nguyên âm là -a
Số liền trước của -a >-a
Số liền sau của -a <-a
Để cho tổng 5 số bất kì là 1 số nguyên dương thì trong 21 số này chắc chắn phải có 1 số lớn hơn 0(số dương),nếu không sẽ không thỏa mãn điều kiện tổng 5 số bất kì là số nguyên dương.
Ta lấy 5 số nguyên bất kì ghép thành 1 cặp,có 21 số nên ta ghép được 4 cặp nha^^,như vậy,tổng 4 cặp này luôn là 1 số nguyên dương(theo đề bài).Còn 1 số thì ở đoạn đầu như mình đã nói,chắc chắn phải có ít nhất 1 số dương,và đó chính là số còn lại(do tổng 5 số bất kì luôn dương mà).Mà 5 số dương cộng với nhau luôn ra số dương
Vậy tổng của 21 số đó luôn luôn là một số nguyên dương
Chúc bạn học tốt^^
Do giả thiết đề bài nên trong 21 số đã cho , có tối đa 4 số nguyên ko dương => các số còn lại là dương
gọi 4 số đó là : a1 ; a2 ; a3 ; a4
Do giả thiết nên tồn tại sao cho S = x + a1 + a2 + a3 + a4 > 0
Lấy tổng của S và 15 số dương còn lại .Dĩ nhiên tổng mới sẽ là số dược ( đpcm )