Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có tồn tại hay ko số tự nhiên k ( k thuộc N* ) sao cho 2003^k-1 chia hết cho 51
giúp minh ddeeeee =((
Ta có 2003 là số lẻ suy ra 2003^k cũng sẽ là số lẻ mà 1 lại là số lẻ suy ra 2003^k-1 là số chẵn mà 51 là số chăn suy ra 2003^k-1 không chia hết cho 51 vậy ko tồn tại
Ta có : n2+n+1=n(n+1)+2 la so chan nen ko co tan cung la5
Để có tận cùng là 0 thì n(n+1) co chu so tan cung la 8
Ma 2 so lien tiep nhan voi nhau ko bao gio co so tan cung la8
Suy ra : n(n+1)+2 ko chia het cho 8
Vậy ko tồn tại số tự nhiên N
không vì A=n^2+n+1 nên A luôn là 1 số lẻ
suy ra A không chia hết cho 2 nên A không chia hết cho bội của 2 là 2010
Không Vì A luôn là số lẻ => không chia hết cho 2=> không chia hết cho 2010
Ta có: n2+n+5=n.n+n+5 =n(n+1)+5
Mà n+1 và n là 2 số tự nhiên liên tiếp nên CSTC khác 3 và 8
=>n(n+1)+2 có CSTC khác 5 và 0
=>n(n+1)+2 không chia hết cho 5
Vậy không tồn tại số tự nhiên n để n2+n+2 chia hết cho 5