Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt số đó là 6abc
Do a = b nên a, b có thể là số từ 0-> 9 (10 số)
mà do số phải chia hết cho 5 =>c = 0 hoặc c = 5
=> có 2 x 10 = 20 số
\(\overline{8abc}\)
a có 10 cách chọn
b có 1 cách chọn
c có 2 cách chọn
=>Có 10*2=20 số
1001 phải là 2 số tự nhiên tiên tiếp
Nên \(\orbr{\begin{cases}n+1=1000\\n+1=1002\end{cases}\Rightarrow\orbr{\begin{cases}n=999\\x=1001\end{cases}}}\)
Thay n=999 ta có:
1+2+3+.....+999=\(\frac{\left(999+1\right)999}{2}=499500\)(loại)
Thay n=1001 ta có:
\(1+2+3+...+1001=\frac{\left(1001+1\right)1001}{2}=501501\)(chọn)
Vậy tổng cần tìm là: 501501
ta gọi số cần tìm là abcd (có gạch trên đầu abcd)
theo đề ra ta có n2 = abcd (có gạch trên đầu abcd)
và ⎧⎩⎨⎪⎪a=d−2b=d−3c=d−1{a=d−2b=d−3c=d−1
vì n2 có tận cùng ∈ {0;1;4;5;6;9} ⇒ d ∈{0;1;4;5;6;9}
mà a ≥ 1 => d ≥ 3 ⇒ d ∈ {4;5;6;9}
=> abcd ( có gạch trên đầu ) ∈ {2134;3245;4356;7689}
thử lại ta thấy chỉ có 4356 = 662 là thỏa mãn
vậy số cần tìm là 4356