Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A.
Gọi số cần tìm có dạng a b c d e
TH1: Nếu e=0 thì có tất cả A 9 4 = 3024 (số)
TH2: Nếu e≠0 thì có 4 cách chọn e;
+ chọn vị trí cho số 0 có 3 cách chọn (đó là các vị trí b, c, d)
+ chọn 3 chữ số từ 8 chữ số còn lại và sắp xếp thứ tự cho 3 chữ số đó có A 8 3 cách.
Vậy có tất cả là 7056 (số) thỏa yêu cầu bài toán.
Đáp án là A.
Gọi số cần lập có dạng: a 1 a 2 a 3 a 4 a 5 ¯
• Chọn 2 số lẻ thuộc nhóm 1 ; 3 ; 5 ; 7 ⇒ C 4 2
• Chọn 3 số chẳn trong nhóm 0 ; 2 ; 4 ; 6 ⇒ C 4 3
• Hoán vị 2 nhóm trên có 5! cách
* Các số có số a 1 = 0
• Chọn 2 số lẻ thuộc nhóm 1 ; 3 ; 5 ; 7 ⇒ C 4 2
• Chọn 2 số chẳn trong nhóm 0 ; 2 ; 4 ; 6 ⇒ C 3 2
• Hoán vị 2 nhóm trên có 4! cách
Vậy các số cần tìm: C 4 2 . C 4 3 .5 ! − C 4 2 . C 3 2 .4 ! = 2448 số
Xét hai tập hợp A={0;1;2;3;5;8} và B={0;1;2;5;8}.
● Xét số có bốn chữ số đôi một khác nhau với các chữ ố lấy từ tập A.
Gọi số cần tìm có dạng a b c d ¯ vì a b c d ¯ là số lẻ →d={1;3;5}
Khi đó, d có 3 cách chọn, a có 4 cách chọn, b có 4 cách chọn và c có 3 cách chọn.
Do đó, có 3.4.4.3=144 số thỏa mãn yêu cầu trên.
● Xét số có bốn chữ số đôi một khác nhau với các chữ số lấy từ tập B.
Gọi số cần tìm có dạng a b c d ¯ vì a b c d ¯ là số lẻ →d={1;5}
Khi đó, d có 2 cách chọn, a có 3 cách chọn, b có 3 cách chọn và c có 2 cách chọn.
Do đó, có 2.3.3.2=36 số thỏa mãn yêu cầu trên.
Vậy có tất cả 144-36=108 số cần tìm.
Chọn đáp án B.
Đáp án B
Số các số lẻ có 4 chữ số
Chữ số hàng đơn vị có 3 cách chọn, chữ số hàng nghìn có 4 cách chọn, chữ số hàng trăm và hàng chục có lần lượt 4 và 3 cách chọn
Do đó có: 3.4.4.3 = 144 số
Số các số lẻ có 4 chữ số và không có chữ số 3 là 3.4.3 = 36
Vậy có 144 − 36 = 108 số
Đáp án C
Trước tiên ta đếm số các số lẻ có bốn chữ số đôi một khác nhau lập được từ các số đã cho: có 3 cách chọn chữ số hàng đơn vị, có 4 cách chọn chữ số hàng nghìn, có A 4 2 = 6 . 2 cách chọn hai chữ số hàng trăm và hàng chục. Như vậy có 3.4.6.2=144 số như trên.
Tiếp theo ta đếm số các số lẻ có bốn chữ số đôi một khác nhau và không có mặt chữ số 1: Tương tự trường hợp trên, ta được số các số thuộc loại này là: 2.3.3=18.
Vậy số các số tự nhiên lẻ có bốn chữ số đôi một khác nhau mà phải có mặt số 1 là: 144 - 18 = 126
Đáp án D
Xét từng trường hợp: chữ số đầu tiên bằng 1, chữ số thứ hai bằng 1, chữ số thứ ba bằng 1.
Cách giải: Gọi số đó là a b c d e →
- TH1: a=1
+ b có 7 cách chọn.
+ c có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có: 7.6.5.4=840 số
- TH2:b=1
+ a ≠ b , a ≠ 0 nên có 6 cách chọn.
+ c có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có: 6.6.5.4=720 số.
- TH3: c=1.
+ a ≠ c , a ≠ 0 nên có 6 cách chọn.
+ b có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có 6.6.5.4=720 số.
Vậy có tất cả 840+720+720=2280 số.
Đáp án D
HD: Số cần lập có dạng: a b c d e ¯ ( a , b ; c , d , e ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; a ≠ 0 ) .
THI: Với e = 0 khi đó có 4 cách chọn vị trí cho số 2 và có A 8 3 cách chọn và sắp xếp 3 chữ số còn lại. Do đó có 4 A 8 3 số
TH2: Với e = 2 , khi đó có 3 cách chọn vị trí cho số 0 và có A 8 3 cách chọn và sắp xếp 3 chữ số còn lại. Do đó có 3 A 8 3 số.
TH3: Với e = 4 ; 6 ; 8 , có 3 vị trí sắp xếp số 0, 3 vị trí sắp xếp số 2 và A 7 2 cách chọn và sắp xếp 2 chữ số còn lại. Do đó có 3.3.3. A 7 2 số
Theo quỵ tắc cộng có: 4 A 8 3 + 3 A 8 3 + 27 A 7 2 = 3486 số.