K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NT
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
EG
0
G
1 tháng 3 2018
\(VT=\left|3x+1\right|+\left|3x-5\right|=\left|3x+1\right|+\left|5-3x\right|\ge\left|3x+1+5-3x\right|=6\)
\(VP=\frac{12}{\left(y+3\right)^2+2}\le\frac{12}{2}=6\)
Như vậy \(VT\ge6;VP\le6\)
Mà \(VT=VP\Leftrightarrow VT=VP=6\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\frac{1}{3}\le x\le\frac{5}{3}\\y=-3\end{cases}}\)
PQ
2
9 tháng 1 2016
Phan quốc Việt Phan quốc ViệtH uỳnh Châu Giang Nguyễn Phi Hòa nguyễn văn thành
Với bài này, ta phải chia trường hợp để phá ngoặc. VD để |x-1| = x-1 thì x-1 phải lớn hơn hoặc bằng 0, hay x lớn hơn hoặc bằng 1 là 1 trường hợp. Còn nếu x nhỏ hơn 1 thì |x-1| = -(x-1)
TH1: \(x< 1\), ta có :
\(-\left(x-1\right)+\left[-\left(x-5\right)\right]=4\)
\(1-x+5-x=4\)
\(6-2x=4\)
\(x=\frac{6-4}{2}=1\)( Không thỏa mãn x < 1 )
TH2 \(1\le x\le5;\)ta có :
\(\left(x-1\right)+\left[-\left(x-5\right)\right]=4\)
\(\Rightarrow x-1+5-x=4\)
\(4=4\)( Thỏa mãn )
Do đó với \(1\le x\le5;\) thì đẳng thức luôn thỏa mãn
TH3 : \(x>5;\)có :
\(x-1+x-5=4\)
\(2x-6=4\)
\(x=\frac{6+4}{2}=5\)(Không thỏa mãn )
Vậy \(1\le x\le5.\)