Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý rằng /x/+/y/\(\ge\) /x+y/
Ta có /2x-2/+/2x-6/=/2x-2/+/6-2x/\(\ge\)/2x-2+6-2x/=/4/=4
Như vậy ko có số nguyên x nào thỏa mãn đề bài
|2x - 2| + |2x - 6| = |2x - 2| + |6 - 2x| = 4
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có:
\(\left|2x-2\right|+\left|6-2x\right|\ge\left|2x-2+6-2x\right|=\left|4\right|=4\)
Mà theo đề bài: |2x - 2| + |6 - 2x| = 4 nên \(\hept{\begin{cases}2x-2\ge0\\2x-6\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x\ge2\\2x\le6\end{cases}}\)\(\Rightarrow2\le2x\le6\)\(\Rightarrow1\le x\le3\)
Vậy có vô số số x thỏa mãn đề bài (nếu số x nguyên thì chỉ có 3 số thôi)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|2x-2\right|+\left|2x-6\right|=\left|2x-2\right|+\left|6-2x\right|\ge\left|2x-2+6-2x\right|=\left|4\right|=4\)
Do đó, |2x - 2| + |2x - 6| < 4 là vô lý
Vậy không tồn tại giá trị x nguyên thỏa mãn đề bài
\(x^2\left(x^2-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy có 3 số nguyên t/m
Ta có:x^2-2x+1=6y^2-2x+2
x^2+1-2=6y^2-2x+2x
x^2-1=6y^2
y^2=x^2-1/6
Vì y^2 thuộc ước của x^2-1/6 suy ra y^2 là số chẵn mà y^2 là số chẵn suy ra y=2
Thay vào ta có:x^2-1/6=4
x^2-1=24
x^2=25
suy ra x=5.Vậy x=5:y=2 (Thử lại nhé)
x=2=>2+2=4 ko thao man <4
x=3=>4+0=4 ko thoa man <4
x>3 VT>4 => ko co so nao thoa man dau bai
khong co so nao thoa man dau bai dau nhe