Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 2 số nguyên tố lớn hơn 20 và 30
Đó là : 23, 29
Chúc bạn học tốt:>
câu 11:A
câu 12:A
câu 13: hình như sai đáp án, phải là 3 mũ chứ ko phải là 32 ở đáp án b đó
câu 14: C
mình tạm thời chỉ trả lời vậy thui, mình đang học
Có 5 số nguyên tố nhỏ hơn 50 và lớn hơn 30: 31; 37; 41; 43; 47
Giả sử
(7n+2,2n+1) =k với k# 3
=> (7n+2, 3(2n+1)) =k (do k #3)
=> [7n+2 -3(2n+1), 2n+1] =k
=> (n-1, 2n+1) =k (*)
Mặt khác k lẻ do 2n +1 lẻ
Từ (*) => (2n+1, 2n-2) =k
=> [2n+ 1, (2n+1) -(2n-2)] =k
=> (2n+1,3) =k
do k # 3 => k=1
Từ đó suy ra với giá trị nào đó của n thì 2 số đã cho chỉ có ước chung duy nhất là k =3, còn lại là nguyên tố cùng nhau
Ta thấy nếu n có dạng n=3k +1 thì 2n+1 và 7n+2 có ước chung là k =3
=> n=3k và n=3k+2 thì 2 số đã cho nguyên tố cùng nhau
Từ 11 -> 999 có 989 số, trong đó có 329 số chia cho 3 dư 1 (do ko tính số 10 theo đề bài)
Như vậy còn lại 989 -329 = 660 số n để (2n+1) và (7n+2) nguyên tố cùng nhau
Tick nhé Nguyen Thi Le Giang
Giả sử
(7n+2,2n+1) =k với k# 3
=> (7n+2, 3(2n+1)) =k (do k #3)
=> [7n+2 -3(2n+1), 2n+1] =k
=> (n-1, 2n+1) =k (*)
Mặt khác k lẻ do 2n +1 lẻ
Từ (*) => (2n+1, 2n-2) =k
=> [2n+ 1, (2n+1) -(2n-2)] =k
=> (2n+1,3) =k
do k # 3 => k=1
Từ đó suy ra với giá trị nào đó của n thì 2 số đã cho chỉ có ước chung duy nhất là k =3, còn lại là nguyên tố cùng nhau
Ta thấy nếu n có dạng n=3k +1 thì 2n+1 và 7n+2 có ước chung là k =3
=> n=3k và n=3k+2 thì 2 số đã cho nguyên tố cùng nhau
Từ 11 -> 999 có 989 số, trong đó có 329 số chia cho 3 dư 1 (do ko tính số 10 theo đề bài)
Như vậy còn lại 989 -329 = 660 số n để (2n+1) và (7n+2) nguyên tố cùng nhau
có bao nhiêu số nguyên tố lớn hơn 10 và nhỏ hơn 20
Có 4 số nguyên tố nha
11 , 13 , 17 , 19
HT
16 số:3;5;7;11;13;17;19;23;29;31;37;41;43;47;53;59
16 số nguyên tố >2 va <60