K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

Gợi ý cho bạn :

Đặt \(x=a+b\)\(y=b+c\) , \(z=c+d\) , \(t=d+e\)\(u=e+a\),

Ta có \(a=\frac{x+u-t+z-y}{2}\)\(b=\frac{x+y+t-z-u}{2}\)\(c=\frac{y+z+u-t-x}{2}\)\(d=\frac{z+t+x-y-u}{2}\)\(e=\frac{t+u+y-x-z}{2}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+e}+\frac{d}{e+a}+\frac{e}{a+b}\)

\(=\frac{x+u+z-t-y}{2y}+\frac{x+y+t-z-u}{2z}+\frac{y+z+u-t-x}{2t}+\frac{z+t+x-y-u}{2u}+\frac{t+u+y-x-z}{2x}\)

Đến đây nhóm lại rồi áp dụng BĐT Cauchy.

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

26 tháng 11 2021

1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học

2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365

 

26 tháng 7 2016

\(1-\frac{a}{a+1}=\frac{1}{1+a}=\frac{c}{c+1}+\frac{b}{b+1}+\frac{d}{d+1}\Rightarrow\frac{1}{a+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\)

cmtt rồi nhân 3 cái lại vs nhau => đpcm

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Chỉ với những điều kiện như em nêu thì biểu thức này không rút gọn thêm được. 

Còn việc bé hơn hoặc bằng một biểu thức nào khác thì có nhiều. Tốt nhất em nên nêu cụ thể đề để được hỗ trợ tốt hơn.

 

28 tháng 6 2016

Bài toán này là 'Bài toán 108' thuộc chuyên mục 'Toán vui hàng tuần' mà !