Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk để pt trên có 2 nghiệm phân biệt x1,x2 : a>0 và denta>0
suy ra denta= (2m+1)^2-4.(m^2+1)>0
suy ra : m>3/4
Ta có P=x1x2/x1+x2=(m^2+1)/(2m+1)
Ta có: P∈Z
⇒4P∈Z
⇒(4m^2+4)/2m+1=(2m-1)+5/2m+1∈Z
⇒2m+1=Ư(5)={−5;−1;1;5}
⇒m={−3;−1;0;2}
Kết hợp đk m>3/4 ta được m=2
Trường hợp 1: m=10
Phương trình sẽ là -40x+6=0
hay x=3/20
=>m=10 sẽ thỏa mãn trường hợp a
Trường hợp 2: m<>10
\(\Delta=\left(-4m\right)^2-4\left(m-10\right)\left(m-4\right)\)
\(=16m^2-4\left(m^2-14m+40\right)\)
\(=16m^2-4m^2+56m-160\)
\(=12m^2+56m-160\)
\(=4\left(3m^2+14m-40\right)\)
\(=4\left(3m^2-6m+20m-40\right)\)
\(=4\left(m-2\right)\left(3m+20\right)\)
a: Để phương trình có nghiệm thì (m-2)(3m+20)>=0
=>m>=2 hoặc m<=-20/3
b: Để phương trình có hai nghiệm phân biệt đều dương thì
\(\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\\dfrac{4m}{m-10}>0\\\dfrac{m-4}{m-10}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\m\in\left(-\infty;0\right)\cup\left(10;+\infty\right)\\m\in\left(-\infty;4\right)\cup\left(10;+\infty\right)\end{matrix}\right.\)
\(\Leftrightarrow m\in\left(-\infty;-\dfrac{20}{3}\right)\cup\left(10;+\infty\right)\)
PT có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m+1\right)^2-\left(m^2-1\right)\ge0\\ \Leftrightarrow m^2+2m+1-m^2+1\ge0\\ \Leftrightarrow m\ge-1\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2-1\end{matrix}\right.\)
Ta có \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{6}\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{2\left(m+1\right)}{m^2-1}=\dfrac{1}{6}\Leftrightarrow12m+12=m^2-1\\ \Leftrightarrow m^2-12m-13=0\\ \Leftrightarrow\left[{}\begin{matrix}m=13\left(tm\right)\\m=-1\left(tm\right)\end{matrix}\right.\)
Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.
Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.
Bước 3. Đối chiếu với điều kiện và kết luận bài toán.
xem tr sách của anh
Bài 1:
PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(m+2\right)^2-4\cdot2\ge0\Leftrightarrow m^2+4m-8\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-2-2\sqrt{3}\\m\ge-2+2\sqrt{3}\end{matrix}\right.\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2\end{matrix}\right.\)
Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=9x_1x_2\)
\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=18\\ \Leftrightarrow2\left(m+2\right)^2-8=18\\ \Leftrightarrow2m^2+8m+8-8=18\\ \Leftrightarrow m^2+4m-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{13}\\m=-2-\sqrt{13}\end{matrix}\right.\left(tm\right)\)
\(\Delta=\left(m-1\right)^2-4\left(m+3\right)=m^2-6m-11>0\) (1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=m+3\end{matrix}\right.\)
Ta có:
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(m-1\right)^2-2\left(m+3\right)=m^2-4m-5\)
Biểu thức này ko tồn tại cả min lẫn max với điều kiện m từ (1)
\(\dfrac{x_2}{x_1}=\dfrac{x_3}{x_2}=\dfrac{x_2+x_3}{x_1+x_2}=\dfrac{x_2+x_3}{3}\) (1)
\(\dfrac{x_3}{x_2}=\dfrac{x_4}{x_3}=\dfrac{x_3+x_4}{x_2+x_3}=\dfrac{12}{x_2+x_3}\)
\(\Rightarrow\dfrac{x_2+x_3}{3}=\dfrac{12}{x_2+x_3}\Rightarrow x_2+x_3=\pm6\)
Th1: \(x_2+x_3=6\) thế vào (1):
\(\dfrac{x_2}{x_1}=\dfrac{x_3}{x_2}=\dfrac{x_4}{x_3}=\dfrac{6}{3}=2\) \(\Rightarrow\left\{{}\begin{matrix}x_2=2x_1\\x_4=2x_3\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}x_1+x_2=3\\x_3+x_4=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x_1=3\\3x_3=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=1;x_2=2\\x_3=4;x_4=8\end{matrix}\right.\)
\(\Rightarrow m=x_1x_2=2\)
Khỏi cần làm TH2 \(x_2+x_3=-6\) nữa, chọn luôn C
1.
\(\Leftrightarrow6x^2-12x+7-6\sqrt{6x^2-12x+7}-7=0\)
Đặt \(\sqrt{6x^2-12x+7}=t>0\)
\(\Rightarrow t^2-6t-7=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=7\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{6x^2-12x+7}=7\)
\(\Leftrightarrow6x^2-12x+7=49\Rightarrow x=1\pm2\sqrt{2}\)
2.
\(\Delta'=\left(m+1\right)^2-m^2-3=2m-2>0\Rightarrow m>1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3\end{matrix}\right.\)
\(\left(x_1+x_2\right)^2-2x_1x_2=2x_1x_2+8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-8=0\)
\(\Leftrightarrow4\left(m+1\right)^2-4\left(m^2+3\right)-8=0\)
\(\Leftrightarrow2m-4=0\Rightarrow m=2\)
\(\Delta=\left(m+2\right)^2-4m=m^2+4>0\) pt luôn có 2 nghiệm pb
Để \(x_1;x_2\ne0\Leftrightarrow m\ne0\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m\end{matrix}\right.\)
\(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}>1\Leftrightarrow x_1^2+x_2^2>\left(x_1x_2\right)^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1x_2\right)^2>0\)
\(\Leftrightarrow\left(m+2\right)^2-2m-m^2>0\)
\(\Leftrightarrow2m+4>0\Rightarrow m>-2\)
Có \(10-\left(-1\right)+1-1=11\) giá trị nguyên của m thỏa mãn (loại \(m=0\))