Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2x+5y=2021$ lẻ nên $5y$ lẻ. Do đó $y$ lẻ
$5y=2021-2x\leq 2021$ với mọi $x\in\mathbb{N}$
$\Rightarrow y\leq 404,2$. Mà $y$ tự nhiên nên $y\leq 404$
Với $y$ là số tự nhiên lẻ, $y\leq 404$ thì $y$ có thể nhận giá trị từ $1,3,5,...,403$
Như vậy, có $202$ giá trị của $y$ thỏa mãn, kéo theo $202$ cặp $(x,y)$ thỏa đkđb.
Ta có:
(x-y)(x-y)=[(x+y)]-[y(x+y)]=(x2+xy)-(xy+y2)=x2+xy-xy-y2=2014
Hiệu của 2 số chính phương trên là 4 nên ko có cặp số tự nhiên x;y nào thỏa mãn.
Đúng đó k mink nha!
ta có 3n+10 chia hết cho n-1
=>3n-3+13 chia hết cho n-1
mà 3n-3 chia hết cho n-1
=>13 chia hết cho n-1
ta có bảng sau:
n-1 | 1 | 13 | -1 | -13 | |
n | 2 | 14 | 0 | -12 |
=>n=(2;14;0;-12)
\(\left(2x+1\right)\left(3y+1\right)=30\)
2x+1 | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 |
3y+1 | 30 | 15 | 10 | 6 | 5 | 3 | 2 | 1 |
x | 0 | 1/2(loại) | 1 | 2 | 5/2(loại) | 9/2(loại) | 7 | 29/2(loại) |
y | 29/3(loại) | loại | 3 | 5/3(loại) | loại | loại | 2 | loại |
xy | loại | loại | 3 | loại | loại | loại | 14 | loại |
Vậy ...