K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Xét x = 0 ko là nghiệm của pt

Chia cả pt cho x2 ta được:

\(x^2+x+1+\dfrac{1}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+\left(x+\dfrac{1}{x}\right)+1=0\)

Đặt: \(x+\dfrac{1}{x}=y\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+2=y^2\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}=y^2-2\)

Ta được: \(y^2-2+y+1=0\)

\(\Leftrightarrow y^2+y-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{-1+\sqrt{5}}{2}\\y=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

Thế y vào 2 trường hợp là được

Nó ra số vô tỉ, không đẹp lắm

20 tháng 2 2019

\(\Delta AEH\infty\Delta AHB\left(g.g\right)\Rightarrow\frac{AE}{AH}=\frac{AH}{AB}\Rightarrow AB.AE=AH^2\)

\(\Delta AFH\infty\Delta AHC\left(g.g\right)\Rightarrow\frac{AF}{AH}=\frac{AH}{AC}\Rightarrow AC.AF=AH^2\)

Do đó: \(AB.AE+AC.AF=2AH^2\)

C/m được AFHE là hình chữ nhật \(\Rightarrow AH=EF\)

Vậy \(AB.AE+AC.AF=2EF^2\)

30 tháng 4 2018

vì a;b;c >0 nên 1/a;1/b;1/c>0

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>=3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{a}\cdot\frac{1}{b}\cdot\frac{1}{c}}\)(bđt cosi)

\(=3\sqrt[3]{abc}\cdot3\cdot\frac{1}{\sqrt[3]{abc}}=9\cdot\sqrt[3]{abc}\cdot\frac{1}{\sqrt[3]{abc}}=9\cdot\frac{\sqrt[3]{abc}}{\sqrt[3]{abc}}=9\)

\(\Rightarrow\)đpcm

30 tháng 4 2018

cách khác nhé:

\(VT=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

C/m BĐT phụ:    \(\frac{x}{y}+\frac{y}{x}\ge2\)      (x,y > 0)

               \(\Leftrightarrow\)\(\frac{x^2}{xy}+\frac{y^2}{xy}\ge\frac{2xy}{xy}\)

              \(\Leftrightarrow\) \(\frac{x^2+y^2-2xy}{xy}\ge0\)

             \(\Leftrightarrow\) \(\frac{\left(x-y\right)^2}{xy}\ge0\)  luôn đúng

Dấu "=" xảy ra  \(\Leftrightarrow\) \(x=y\)

Áp dụng BĐT trên ta có:

      \(VT=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)

hay   \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)  (đpcm)

Dấu  "="  xảy ra  \(\Leftrightarrow\)\(a=b=c\)

26 tháng 10 2019

a) x2 - 2x - 3 = x2 - 3x + x - 3 = x(x - 3) + (x - 3) = (x + 1)(x - 3)

b) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x(x + 3) - (x + 3) = (2x - 1)(x + 3)

c) x2 - 4x - 5 = x2 - 5x + x - 5 = x(x - 5) + (x - 5) = (x + 1)(x - 5)

d) x2 + x - 12 =x2 + 4x - 3x - 12 = x(x + 4) - 3(x + 4) = (x - 3)(x + 4)

24 tháng 6 2018

Giải:

a) \(x\left(x-2\right)-\left(x+3\right).x+7+9x=6\)

\(\Leftrightarrow x^2-2x-\left(x^2+3x\right)+7+9x=6\)

\(\Leftrightarrow x^2-2x-x^2-3x+7+9x=6\)

\(\Leftrightarrow4x=-1\)

\(\Leftrightarrow x=-\dfrac{1}{4}\)

Vậy ...

b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)

\(\Leftrightarrow21x-35-15x^2+25x-\left(10x+2-15x^2+6x\right)=4\)

\(\Leftrightarrow21x-35-15x^2+25x-10x-2+15x^2-6x=4\)

\(\Leftrightarrow30x-37=4\)

\(\Leftrightarrow30x=41\)

\(\Leftrightarrow x=\dfrac{41}{30}\)

Vậy ...

c) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)=14x\) (Sửa đề)

\(\Leftrightarrow x^3+8-x^3-3=14x\)

\(\Leftrightarrow5=14x\)

\(\Leftrightarrow x=\dfrac{5}{14}\)

Vậy ...

d) \(\left(x^2-x+1\right)\left(x+1\right)-x^3-3x=2\)

\(\Leftrightarrow x^3+1-x^3-3x=2\)

\(\Leftrightarrow1-3x=2\)

\(\Leftrightarrow-3x=1\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

Vậy ...

25 tháng 6 2018

a) \(x\left(x-2\right)-\left(x+3\right)x+7+9x=6\)

=> \(x^2-2x-x-3x+7+9x=6\)

=> \(x^2-2x-x^2-3x+7+9x=6\)

=> \(\left(x^2-x^2\right)+\left(-2x-3x+9x\right)=6-7\)

=> \(4x=-1\)

Vậy \(x=\dfrac{-1}{4}\)

b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)

=>\(21x-15x^2-35+25x-10x+15x^2-4+6x=4\)

=> \(\left(21x+25x-10x+6x\right)\)\(+\left(-15x^2+15x^2\right)\)\(=4+35+4\)

=> \(42x=43\)

Vậy \(x=\dfrac{43}{42}\)

c) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)=14\)

=> \(x^3-2x^2+4x+2x^2-4x+8-x^3-3\)\(=14x\)

=>\(\left(x^3-x^3\right)+\left(-2x^2+2x^x\right)+\left(4x-4x\right)+\left(8-3\right)\)\(=14x\)

=> \(5=14x\)

Vậy \(x=\dfrac{5}{14}\)

d) \(\left(x^2-x+1\right)\left(x+1\right)-x^3-3x=2\)

=> \(x^3+x^2+x+x^2-x+1-x^3-3x=2\)

=>\(\left(x^3-x^3\right)+\left(-x^2+x^2\right)+\left(x-x-3x\right)=2-1\)

=> \(-3x=1\)

Vậy \(x=\dfrac{-1}{3}\)

19 tháng 10 2019

\((a+3)^2-(a-1)^2\\ =(a+3-a+1)(a+3+a-1)\\ =4(2a+2)\\ =8(a+1)\\ \)

Vì 8 ⋮ 8 với mọi a ∈ Z.

=> 8(a+1) ⋮ 8 với mọi a ∈ Z.

Vậy ( a + 3 )2 - ( a - 1 )2 ⋮ 8 với mọi a ∈ Z.

20 tháng 3 2022

a) x(4x + 2) = 4x2 - 14

⇔ 4x2 + 2x = 4x2 - 14

⇔ 4x2 - 4x2 + 2x = -14

⇔ 2x = -14

⇔ x = -7

Vậy tập nghiệm S = ......

b) (x2 - 9)(2x - 1) = 0

⇔ x2 - 9 = 0 hoặc 2x - 1 = 0

⇔ x2 = 9 hoặc 2x = 1

⇔ x = 3 hoặc -3 hoặc x = \(\dfrac{1}{2}\)

Vậy .......

c) \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{x^2-4}\) 

⇔ \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{\left(x-2\right)\left(x+2\right)}\)

ĐKXĐ: x - 2 ≠ 0 và x + 2 ≠ 0

       ⇔ x ≠ 2 và x ≠ -2MSC (mẫu số chung): (x - 2)(x + 2)Quy đồng mẫu hai vế và khử mẫu ta được:3x + 6 + 4x - 8 = x - 12⇔ 3x + 4x - x = 8 - 6 - 12⇔ 6x = -10⇔ x = \(-\dfrac{5}{3}\) (nhận)Vậy ........
5 tháng 4 2017

minh lớp 8 nè nhưng chưa có đề nếu có đề mình nói chp

5 tháng 4 2017

có lớp 6