K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 10 2021

Bạn lên google gõ các chuyên đề về BĐT Bunhiacopxky có rất nhiều mà.

$(a_1^2+a_2^2+...+a_n^2)(b_1^2+b_2^2+...+b_n^2)\geq (a_1b_1+a_2b_2+...+a_nb_n)^2$
Dấu "=" xảy ra khi:

$\frac{a_1}{b_1}=\frac{a_2}{b_2}=...=\frac{a_n}{b_n}$

7 tháng 10 2021

dạ mik cảm ơn

8 tháng 6 2016

Kỹ thuật chọn điểm rơi hay còn được gọi kỹ thuật điều chỉnh và lựa chọn tham số. Đối với một số BĐT đồng dạng không đối xứng thì dấu BĐT trong BĐT thường xảy ra khi giá trị của các biến tướng ứng không bằng nhau. Vì vậy, cần lựa chọn kỹ thuật hợp lý để giải các bài toán BĐT (hay cực trị) dạng không đối xứng là rất cần thiết. Một trong những kỹ thuật cơ bản nhất chính là xây dựng thuật toán sắp thứ tự gần đều. (kỹ thuật điểm rơi). 
Kỹ thuật chủ yếu ở đây thường là các giá trị trung gian được xác định theo cách chọn đặc biệt để tất cả các dấu đẳng thức đồng thời xảy ra. Tham số phụ đưa vào một cách hợp lý để phương trình xác định chúng có nghiệm. 

8 tháng 6 2016

mình không hiểu

9 tháng 7 2016

A B C M H K

a) Dễ thấy \(\Delta HBM\) và \(\Delta KCM\) là nửa các tam giác đều

Đặt BM = x ; CM = y \(\Rightarrow x+y=a\) (không đổi)

Ta có \(MH=sinB.BM=\frac{\sqrt{3}x}{2}\) ; \(MK=sinC.CM=\frac{\sqrt{3}y}{2}\)

\(\Rightarrow MH+MK=\frac{\sqrt{3}}{2}\left(x+y\right)=\frac{\sqrt{3}a}{2}\) không đổi.

b) Vì MH + MK không đổi khi M di chuyển trên BC (câu a) nên MH.MK đạt giá trị lớn nhất \(\Leftrightarrow MH=MK\)

Theo bất đẳng thức Cosi, ta có : \(MH.MK\le\frac{\left(MH+MK\right)^2}{4}=\frac{\left(\frac{\sqrt{3}a}{2}\right)^2}{4}=\frac{3a^2}{16}\)

Vậy Max MH.MK \(=\frac{3a^2}{16}\Leftrightarrow MH=MK\Leftrightarrow MB=MC\Leftrightarrow\)M là trung điểm của BC

Tham khảo Bất đẳng thức Côsi ( Cauchy ) - ToanHoc.org

5 tháng 1 2022

nhanh + gọn + lẹ

AH
Akai Haruma
Giáo viên
6 tháng 5 2021

Lời giải:

a) Vì ĐTHS đi qua điểm $A$ nên:

$y_A=ax_A^2$

$\Leftrightarrow -1=a.2^2\Rightarrow a=-\frac{1}{4}$

b) Vậy hàm số có công thức: $y=\frac{-1}{4}x^2$

Hình vẽ: