Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Số cách chọn 3 cuốn sách trong 10 cuốn để phát ngẫu nhiên cho 3 bạn là A 10 3
Đáp án B.
Chọn 3 cuốn ngẫu nhiên từ 10 cuốn có C 10 3 cách.
Tặng 3 cuốn cho 3 bạn có 3! cách.
Suy ra số cách phát thưởng là 3!. C 10 3 = A 10 3 cách.
Đáp án B
30 quyển sách chia thành 15 bộ gồm :
+) 6 bộ giống nhau gồm 1 Toán- 1 Lý
+) 5 bộ giống nhau gồm 1 Lý – 1 Hóa
+) 4 bộ giống nhau gồm 1 Toán – 1 Hóa
Chọn 6 học sinh trong 15 học sinh để trao bộ Toán- Lý có C 15 6 cách
Chọn 5 học sinh trong 9 học sinh còn lại để trao bộ Lý- Hóa có C 9 5 cách
Vậy 4 học sinh còn lại sẽ được nhận bộ Toán – Hóa. Vậy có C 15 6 . C 9 5 cách trao thưởng.
số cách phân phối phần thưởng là :
\(C_{15}^2\cdot C_{13}^3\cdot C_{10}^{10}\)
Lời giải:
Theo bài thì mỗi bạn sẽ nhận 2 quyển vở khác loại. Gọi số bạn nhận vở toán văn là $a$, vở văn anh là $b$, vở anh toán là $c$
Ta có:
$a+b+c=9; a+b=6; b+c=5; a+c=7$
$\Rightarrow a=3; b=2; c=4$
Tặng quà cho 9 bạn thỏa đề tức là tặng quà sao cho có 3 bạn trong 9 bạn nhận được toán văn, 2 bạn trong 6 bạn còn lại nhân được văn anh, 4 bạn còn lại nhận được anh toán. Số cách trao là:
$C^3_9.C^2_6.C^4_4=1260$
Theo nguyên lý chia kẹo Euler, ta có \(C_{5-1}^{3-1}=6\) cách trao giải thưởng