Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì R 3 song song với R 1 và R 2 nên:
U = U 1 = U 2 = U 3 = 4,8V
I = I 1 + I 2 + I 3 → I 3 = I - I 1 - I 2 = 1,5 – 0,8 – 0,4 = 0,3A
Điện trở R 3 bằng:
Điện trở tương đương của toàn mạch là:
\(MCD:R1nt\left(R2//R3\right)\)
\(=>R=R1+R23=R1+\dfrac{R2\cdot R3}{R2+R3}=18+\dfrac{20\cdot30}{20+30}=30\Omega\)
\(=>I=I1=I23=\dfrac{U}{R}=\dfrac{12}{30}=0,4A\)
Ta có: \(U23=U2=U3=U-U1=12-\left(0,4\cdot18\right)=4,8V\)
\(=>\left\{{}\begin{matrix}I2=\dfrac{U2}{R2}=\dfrac{4,8}{20}=0,24A\\I3=\dfrac{U3}{R3}=\dfrac{4,8}{30}=0,16A\end{matrix}\right.\)
\(R_{12}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{6.4}{6+4}=2,4\left(\Omega\right)\)
Điện trở tương đương của mạch điện:
\(R_{tđ}=R_{12}+R_3=2,4+2=4,4\left(\Omega\right)\)
Do mắc nối tiếp nên \(I=I_{12}=I_3=\dfrac{U}{R_{tđ}}=\dfrac{11}{4,4}=2,5\left(A\right)\)
Do mắc song song nên:\(U_{12}=U_1=U_2=I_{12}.R_{12}=2,5.2,4=6\left(V\right)\)
\(\left\{{}\begin{matrix}I_1=\dfrac{U_1}{R_1}=\dfrac{6}{6}=1\left(A\right)\\I_2=\dfrac{U_2}{R_2}=\dfrac{6}{4}=1,5\left(A\right)\end{matrix}\right.\)
R1 nt R2 nt R3
\(=>I1=I2=I3=\dfrac{U}{R1+R2+R3}=\dfrac{U}{3R}\left(A\right)\)
R1//R2//R3
\(=>U1=U2=U3=U\) mà các điện trở R1=R2=R3=R
\(=>\dfrac{1}{Rtd}=\dfrac{1}{R}+\dfrac{1}{R}+\dfrac{1}{R}=>\dfrac{1}{Rtd}=\dfrac{3}{R}=>Rtd=\dfrac{R}{3}\Omega\)
\(=>I'=I1=I2=I3=\dfrac{U}{Rtd}=\dfrac{3U}{R}A\)