Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Số phần tử của không gian mẫu
Gọi A là biến cố: “chọn được 4 đại biểu để trong đó mỗi nước đều có 1 đại biểu và có cả đại biểu
nam và đại biểu nữ”
Số cách chọn 4 người đủ các nước tức là có một nước có 2 người, hai nước còn lại, mỗi nước 1 người là:.
Số cách chọn 4 người đủ các nước và toàn đại biểu nam là:
Số cách chọn 4 người đủ các nước và toàn đại biểu nữ là:
Số phần tử của A là n(A) = 2499- 12 - 550 = 1937
Xác suất của biến cố A:
a.
Chọn 1 nam từ 9 nam có 9 cách
Chọn 1 nữ từ 3 nữ có 3 cách
\(\Rightarrow\) Có \(9.3=27\) cách chọn nhóm 1 nam 1 nữ
b.
Chọn 2 nhà toán học từ 8 nahf toán học: \(C_8^2\) cách
Chọn 2 nhà vật lý từ 4 nhà vật lý: \(C_4^2\) cách
\(\Rightarrow C_8^2.C_4^2\) cách lập
c.
Các trường hợp thỏa mãn: (1 nhà toán học nữ, 2 nhà vật lý nam), (1 nhà toán học nữ, 1 nhà toán học nam, 1 nhà vật lý nam), (2 nhà toán học nữ, 1 nhà vật lý nam)
\(\Rightarrow C_3^1.C_4^2+C_3^1.C_5^1.C_4^1+C_3^2.C_4^1\) cách
Chọn D
Số phần tử của không gian mẫu là: .
Gọi A là biến cố “chọn được 4 đại biểu sao cho mỗi Quốc gia đều có ít nhất 1 đại biểu và có cả đại biểu nam và nữ.”
Trường hợp 1: có 2 đại biểu Việt Nam, 1 đại biểu Mỹ, 1 đại biểu Anh.
Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 1 là: cách chọn.
Trường hợp 2: Có 1 đại biểu Việt Nam, 2 đại biểu Mỹ,1 đại biểu Anh.
Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 2 là:
Trường hợp 3: Có 1 đại biểu Việt Nam, 1 đại biểu Mỹ, 2 đại biểu Anh.
Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 3 là: .
Nên tổng số cách chọn thỏa mãn yêu cầu là: 581 + 678 + 678 = 1937.
Vậy xác suất của biến cố A là: .
a/ Chọn 4 đại biểu từ 4 nước, mỗi nước một đại biểu, có \(4.4.4.4=256\) cách
Còn lại 2 đại biểu chọn bất kì từ 12 đại biểu còn lại: \(C_{12}^2=66\) cách
Vậy có \(256.66=...\) cách
b/
Số cách chọn mỗi đoàn có ko nhiều hơn 2 đb, trong đó 1 đoàn ko có đb nào: \(3.\left(C_4^2\right)^3=...\)
Số cách chọn mỗi đoàn có ko nhiều hơn 2 đb, trong đó đoàn nào cũng có đb: \(4^3\left(C_{12}^2-3.C_4^2\right)=...\)
Số cách chọn thỏa mãn: \(3.\left(C_4^2\right)^3+4^3\left(C_{12}^2-3.C_4^2\right)=...\)