K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2016

Ý bạn là: CMR:Tổng bình phương của 4 số tự nhiên liên tiếp không phải là số chính phương

Gọi 4 số đó là n; n + 1; n + 2; n + 3

Ta có:

Đặt A = n(n + 1)(n + 2)(n + 3)

=> A + 1 = n(n + 1)(n + 2)(n + 3) + 1 

=> A + 1 = [n(n + 3)][(n + 1)(n + 2)] + 1

=> A + 1 = (n2 + 3n)(n2 + 3n + 2) + 1

=> A + 1 = (n2 + 3n)2 + 2(n2 + 3n) + 1

=>  A + 1 = (n2 + 3n + 1)2 là số chính phương

      A = (n2 + 3n)2 + 2(n2 + 3n)

Lại có:

(n2 + 3n)2 < (n2 + 3n) + 2(n2 + 3n) = A và A < A + 1

=> (n2 + 3n)2 < A < A + 1

=> (n2 + 3n)2 < A < (n2 + 3n + 1)2
=> A không là số chính phương (Vì (n2 + 3n)2 và (n2 + 3n + 1)2 là 2 số chính phương liên tiếp)

Vậy...

18 tháng 1 2016

ta có : a^3+(a+1)^3+(a+2)^3=a^3+a^3x1^3+a^3x2^3=a^3+a^3+a^3x8=a^3x(1+1+8)=a^3x10

 

18 tháng 1 2016

dễ thì làm đi

9 tháng 11 2015

a,Gọi a là một số nguyên bất kỳ => a có dạng 2k hoặc 2k+1 (k\(\in\)Z)

Xét a = 2k=>\(a^2\)=\(\left(2k\right)^2\)=\(4k^2\)=>\(a^2\) chia 4 dư 0

Xét a= 2k+1=>\(a^2\)=\(\left(2k+1\right)^2\)=\(4k^2\)\(+\)\(4k+1\)=>\(a^2\) chia 4 dư 1

Vậy số chính phương khi chí cho 4 dư 0 hoặc 1.

4 tháng 12 2016

Ví dụ : 1 + 2 + 3 + 4 = 10 ( không phải số chính phương )

           3 + 4 + 5 + 6 = 18 ( không phải số chính phương )

           100 + 101 + 102 + 103 = 406 ( không phải số chính phương )

= > Tổng 4 STN liên tiếp không là số chính phương

Ví dụ;1+2+3+4=10(không phải là số chính phương)

=>tong 4STN liên tiếp không là số chính phương