Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu 2 số không chia hết cho 3cos số dư khác nhau
=> 2 số đó chia 3 dư 1 và 2
=> 2 số đó là 3k+1 và 3q+2
=> tổng 2 số đó là:
3k + 1 + 3q + 2 = 3.(k + q) + 3 = 3.(q + k + 1) chia hết cho 3
=> Tổng 2 số không chia hết cho 3 có số dư khác nhau sẽ chia hết cho 3 (đpcm)
Vì n không chia hết cho 3 nên n có thể được viết dưới dạng n = 3k+1 hoặc n = 3k+2 (k ∈ N*)
Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) = 3k(3k+1)+3k+1. Suy ra n 2 chia cho 3 dư 1.
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) = 3k(3k+2)+6k+4.Suy ra n 2 chia cho 3 dư 1.
=> ĐPCM
vì n chia hết cho 2 mà 1 ko chia hết cho 2 nên n+1 ko chia hết cho 2
n chia hết cho => n là số chẵn
=>n+1 là số lẻ nên ko chia hết cho 2
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
1.
Gọi P=abcdeg
abc chia hết cho7
deg chia hết cho 7
Suy ra abc-deg chia hết cho 7
Và abcdeg chia hết cho 7( vì abc và deg đều chia hết cho 7 và nhân lên thì cũng chia hết cho 7)
2.
5+5²+5³+5⁴+........+5⁹⁹+5¹⁰⁰
=(5+5²)+(5³+5⁴)+......+(5⁹⁹+5¹⁰⁰)
=(5+5²)+5²×(5+5²)+.....+5⁹⁸×(5+5²)
=1×30+5²×30+........+5⁹⁸×30
=30×(1+5²+......+5⁹⁸) chia hết cho 6 vì 30 chia hết cho 6.
Nhấn cho mk r mk giải tiếp cho
Ta có : n không chia hết cho 3
Xét cá trường hợp :
+, n chia 3 dư 1
n=3k+1 => n 2=( 3k+1 ) .( 3k+1 )=9k2+6k+1
+, n chia 3 dư 2
n=3k+2 => n2=(3k+2).(3k+2)=9k2+ 12k+4=(9k2+12k+3)+1
Vậy n2 chia 3 dư 1 => đpcm