K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

Ta có:

\(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}=\dfrac{9a+b}{10b}=\dfrac{999a+111b}{1110b}=\dfrac{999a+a+111b}{1110b}=\dfrac{1000a+111b}{1110b+c}=\dfrac{\overline{abbb}}{\overline{bbbc}}\)

\(\Rightarrow\) Đpcm.

=>\(\dfrac{10a+b}{10b+c}=\dfrac{b}{c}\)

=>10ac+bc=10b^2+bc

=>ac=b^2

=>a/b=b/c=k

=>a=bk; b=ck

=>a=ck^2; b=ck

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{c^2k^4+c^2k^2}{c^2k^2+c^2}=k^2\)

\(\dfrac{a}{c}=\dfrac{ck^2}{c}=k^2\)

=>\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)

12 tháng 11 2017

Ta có:

\(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}=\dfrac{9a+b}{100b}=\dfrac{999a+111b}{1110b}=\dfrac{999a+a+111b}{1110b}=\dfrac{1000a+111b}{1110b+c}=\dfrac{\overline{abbb}}{\overline{bbbc}}\)

\(\Rightarrowđpcm\)

Chúc bạn học tốt!

12 tháng 4 2018

Vâng và i don't know

20 tháng 7 2017

ta có : ab/bc=a.b/b.c=a/c <=> abbbb..b/bbb.bc=a.b.b.....b/b.b.b....b.c=a/c

1 tháng 11 2018

Với số lượng chữ b ở tử và mẫu như nhau, ta có:

(abbb...b) / (bbb...bc)

= (a/c) . (bb...b / bb...b)

= (a/c) . 1

= a/c (đpcm)

1 tháng 11 2018

là số \(\overline{abbb...b}\) ( n - 1 chữ số b chứ k phải là abbb...b đâu bn )

3 tháng 11 2019

Với số lượng chữ b ở tử và mẫu như nhau, ta có:

(abbb...b) / (bbb...bc)

= (a/c) . (bb...b / bb...b)

= (a/c) . 1

= a/c (đpcm)

Xin phép được giải bài mà chính bản thân hỏi :v

Có \(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}\Rightarrow\frac{a}{c}=\frac{10a+b}{10b+c}=\frac{9a+b}{10b}=\frac{9ak+bk}{10bk}\)          \(\left(k=11...1\right)\)(n chữ số 1)

                       \(\Rightarrow\frac{a}{c}=\frac{9a\cdot11...1+b\cdot11...1}{10b\cdot11...1}=\frac{99...9\cdot a+b\cdot11...1}{b\cdot11...10}\)       (n chữ số 9)

                                                                                \(=\frac{\left(100..0-1\right)\cdot a+\overline{bb...b}}{\overline{bb...b0}}\)   (n chữ số 0) (n chữ số b)

                                                                                \(=\frac{\overline{a00...0}-a+\overline{bb...0}}{\overline{bb...b0}}\)

                                                                                \(=\frac{\overline{a00...0}+\overline{bb...b}}{\overline{bb...b0}+c}=\frac{\overline{abb...b}}{\overline{bb...bc}}\)    (đpcm)