Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai. Bạn cho $a=3,b=5$ thì $a^3b-ab^2=60$ không chia hết cho $240$
do m ;m+k ; m+2k là số nguyên tố > 3
=> m ;m+k ;m+2k lẻ
=> 2m+k chẵn
mà 2m chẵn
=>k ⋮ 2
mặt khác m là số nguyên tố >3
=> m có dạng 3p+1 và 3p+2 (p∈ N*)
xét m=3p+1
ta lại có k có dạng 3a ;3a+1;3a+2(a∈ N*)
với k =3a+1 ta có 3p+1 + 2(3a+1) = 3(p+1+3a) loại vì m+2k là hợp số
với k = 3a+2 => m+k = 3(p+a+1) loại
=> k=3a
tương tự với 3p+2
=> k=3a
=> k⋮3
mà (3;2)=1
=> k ⋮ 6
Dot eo chui noi tu lam di
nho k nha!
thang dot cung biet lam bai nay
Có a2 - 1 = (a+1)(a-1)
Xét tích (a-1)a(a+1) chia hết cho 3
Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3 (1)
Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)
Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8 (2)
Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )