Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: n2+n+1= (n+2)(n-1) +3
ta thấy hiệu hai số: (n+2) -(n-1) =3 chia hết cho 3
suy ra:
( *) hoặc (n+2) và (n-1) cùng chia hết cho 3, khi đó (n+2)(n-1) chia hết cho 9 nhưng 3 không chia hết cho 9 , dó đó (n+2)(n-1) +3 không chia hết cho 9 hay n2+n+1 không chia hết cho 9
(**) hoặc (n+2) và (n-1) cùng không chia hết cho 3, khi đó (n+2)(n-1) ko chia hết cho 3,suy ra (n+2)(n-1) +3 ko chia hết cho 3. Mà đã không chia hết cho 3 thì đương nhiên không chia hết cho 9 rồi
------Cho 1 Đ.ú.n,g nhé
n^2+n+1=n.(n+1)+1
nếu n+1 chia hết cho 9
=> n.(n+1) chia hết cho 9
nhưng n.(n+1)+1 ko chia hết cho 9
=> n.(n+1)+1 ko chia hết cho 9
nếu n chia hết cho 9
=> n^2 chia hết cho 9
nhưng (n+1) ko chia hết cho 9
=> n^2+n+1 ko chia het cho 9
nên bất kì giá trị nào của n thì n^2+n+1 ko chia hết cho 9