Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>...\)\(>\frac{1}{\sqrt{n}}\)
Suy ra \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\)\(\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\)\(+...+\frac{1}{\sqrt{n}}=n.\frac{1}{\sqrt{n}}=\sqrt{n}\)
Sau khi ib với Hoàng Nguyễn thì đề bài như sau
Tìm \(n\inℕ\)biết
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+..+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)
ĐKXĐ: n > 1
Ta đi c/m bài toán tổng quát
\(\frac{1}{\sqrt{a-1}+\sqrt{a}}=\frac{\sqrt{a}-\sqrt{a-1}}{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}\)
\(=\frac{\sqrt{a}-\sqrt{a-1}}{a-a+1}\)
\(=\sqrt{a}-\sqrt{a-1}\)
Áp dụng vào bài toán đc
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)
\(\Leftrightarrow\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n}-\sqrt{n-1}=11\)
\(\Leftrightarrow\sqrt{n-1}-1=11\)
\(\Leftrightarrow\sqrt{n-1}=12\)
\(\Leftrightarrow n-1=144\)
\(\Leftrightarrow n=145\left(TmĐKXĐ\right)\)
Vậy n = 145
Ta có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}}...;\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}\)
\(=n.\frac{1}{\sqrt{n}}=\sqrt{n}\left(dpcm\right)\)
Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}}....;\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}}\)
=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}\)
\(=n.\frac{1}{\sqrt{n}}=\sqrt{n}\left(dpcm\right)\)
Đặt A =\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}\)
=> A > \(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+.....+\frac{1}{\sqrt{n}}\)
=> A > \(\frac{1}{\sqrt{n}}.n\)
=> A > \(\sqrt{n}\)
=> \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>\sqrt{n}\)(Đpcm)