K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2015

Đặt A =\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}\)

=> A > \(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+.....+\frac{1}{\sqrt{n}}\)

=> A > \(\frac{1}{\sqrt{n}}.n\)

=> A > \(\sqrt{n}\)

=> \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>\sqrt{n}\)(Đpcm)

23 tháng 7 2016

không biết làm

24 tháng 7 2017

Ta có \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>...\)\(>\frac{1}{\sqrt{n}}\)

Suy ra \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\)\(\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\)\(+...+\frac{1}{\sqrt{n}}=n.\frac{1}{\sqrt{n}}=\sqrt{n}\)

27 tháng 5 2017

mk không biết mình mới lớp 5

25 tháng 12 2018

Sau khi ib với Hoàng Nguyễn  thì đề bài như sau

Tìm \(n\inℕ\)biết

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+..+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)

ĐKXĐ: n > 1

Ta đi c/m bài toán tổng quát

\(\frac{1}{\sqrt{a-1}+\sqrt{a}}=\frac{\sqrt{a}-\sqrt{a-1}}{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}\)

                                  \(=\frac{\sqrt{a}-\sqrt{a-1}}{a-a+1}\)

                                   \(=\sqrt{a}-\sqrt{a-1}\)

Áp  dụng vào bài toán đc

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)

\(\Leftrightarrow\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n}-\sqrt{n-1}=11\)

\(\Leftrightarrow\sqrt{n-1}-1=11\)

\(\Leftrightarrow\sqrt{n-1}=12\)

\(\Leftrightarrow n-1=144\)

\(\Leftrightarrow n=145\left(TmĐKXĐ\right)\)

Vậy  n = 145

12 tháng 9 2016

Ta có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}}...;\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}\)

\(=n.\frac{1}{\sqrt{n}}=\sqrt{n}\left(dpcm\right)\)

5 tháng 8 2016

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}}....;\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}}\)

=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}\)

\(=n.\frac{1}{\sqrt{n}}=\sqrt{n}\left(dpcm\right)\)